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Graphical abstract Abstract

This study was conducted to develop two types of artificial neural network (ANN) model
to predict the rheological properties of bitumen-filler mastic in terms of the complex
modulus and phase angle. Two types of ANN models were developed namely; (i) a
mulfilayer feed-forward neural network model and (ii) a radial basis function network
D_’ model. This study was also conducted to evaluate the accuracy of both types of
Outputs models in predicting the rheological properties of bitumen-filler mastics by means of
statistical parameters such as the coefficient of determination (R2), mean absolute error
9—* (MAE), mean squared error (MSE) and root mean squared error (RMSE) for every
developed model. A set of dynamic shear rheometer (DSR) test data was used on a
range of the bitumen-filler mastics with three filler types (limestone, cement and grit
stone) and two filler concentrations (35 and 65% by mass). Based on the analysis
performed, it was found that both models were able to predict the complex modulus
and phase angle of bitumen-filler mastics with the average R? value exceeding 0.98. A
comparison between the two types of models showed that the radial basis function
network model has a higher accuracy than multilayer feed-forward neural network
model with a higher value of R2 and lower value of MAE, MSE and RMSE. It can be
concluded that the ANN model can be used as an alternative method to predict the
rheological properties of bitumen-filler mastic.

Input layer Hidden layer Output layer

I

Keywords: Artificial neural network, multilayer feed-forward neural network, radial basis
function network, complex modulus (G*) and phase angle (§)

Abstrak

Kajian ini dijalankan untuk membangunkan dua jenis peramalan model berdasarkan
pendekatan rangkaian neuron tiruan (ANN) untuk meramalkan sifat-sifat reologi mastik-
pengisi bitumen dari segi modulus dan sudut fasa yang kompleks. Dua jenis model ANN
telah dibangunkan iaitu; (i) suatu model rangkaian neural galakan ke hadapan
pelbagai lapisan dan (i) model rangkaian fungsi asas jejarian. Kajian ini juga dijalankan
unfuk menilai ketepatan kedua-dua jenis model untuk meramalkan sifat-sifat reologi
mastik pengisi bitumen melalui parameter statistik seperti pekali penentuan tertinggi
(R2), min ralat mutlak terkecil (MAE), min ralat kuasa dua ( MSE) dan punca min ralat
kuasa dua (RMSE) untuk setiap model yang dibangunkan. Satu set dinamik reometer
ricih (DSR) ujian data felah digunakan dalam penentuan mastic pengisi bitumen
dengan figa jenis pengisi (batu kapur, simen dan batfu kersik) dan dua kepekatan
pengisi (35 dan 65%). Berdasarkan analisis yang dijalankan, didapati bahawa kedua-
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dua model dapat meramalkan modulus dan sudut fasa mastik pengisi bitumen
dengan nilai R2 purata melebihi 0.98. Perbandingan antara kedua-dua jenis model
menunjukkan bahawa asas fungsi model rangkaian jejarian mempunyai ketepatan
yang lebih tinggi daripada model pelbagai lapisan rangkaian neural galakan ke
hadapan dengan nilai yang lebih tinggi daripada R2 dan nilai yang lebih rendah
daripada MAE, MSE dan RMSE. Dapat disimpulkan bahawa model ANN boleh
digunakan sebagai kaedah alternatif untuk meramalkan sifat-sifat reologi mastic

pengisi bitumen.

Kata kunci: Rangkaian neural tiruan, rangkaian neural galakan ke hadapan, rangkaian
fungsi asas jejari, modulus kompleks (G*) dan sudut fasa (§)

© 2018 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Therefore, an effective road design is required to
ensure the people life to be more efficient. The road
pavement must be designed for a long time with few
maintenance requirements [1]. The stiffness of
asphalt pavement is depending on the thickness of
each layer of pavement design methods and the
type of filler used. But the basic design of the
pavement is dependent on the frequency of the
pavement is exposed to the vehicle load, ground
support conditions and weather conditions. The
flexural stiffness of the pavement is also closely
related to various aspects such as rufting, the
modulus of resilience and fatigue. All these aspects
can be seen through the rheological properties.
Bitumen-filler mastic is a combination of bitumen and
mineral fillers that highly influenced it rheological
properties [2]. Bitumen is a thermoplastic material
that binds the aggregate to be in stable and strong
condition while the mineral filler material serves to fill
the airspaces between aggregate and bitumen tfo
improve the viscosity of the bitumen thus increase
the pavement durability.

When the bitumen filler mastic are subjected to
the burden of recurrent or persistent pressure, it will
react in an elastic at low temperatures, viscous-
elastic at moderate temperatures and viscous at
high temperatures to which it is closely related to the
stiffness. With the presence of filler mastic, the flexural
stiffness of the bitumen will last longer because the
main goal is to harden the bitumen in order fo
reduce the viscoelastic reaction of asphalt mixture or
improving the elastic component and reduces the
viscous component of bitumen.

Rheology refers to the study of the flow and
deformation of materials under force applied
routinely measured through the dynamic shear
Rheometer (DSR) and dynamic mechanical analysis
(DMA) tests. The DSR test (AASHTO T315-02) was used
for measuring the viscoelastic properties of
bituminous binders for a wide range of temperatures
and frequencies (loading time) while the DMA is used
to detect the rheological properties of the dynamics
of bitumen through the test of the swing using the
rheometer to understand the nature of viscous and

elastic bitumen (various temperature and load rate)
[3]. However, recognising that testing is generally
laborious, fime consuming and expensive, and
requiring skilled operators [4]. Predictive models such
an arfificial neural network (ANN) model can be a
valuable alternative  tool for quantifying the
rheological properties of bituminous binders including
bitumen-filler mastics.

Artificial Neural Network (ANN) has been inspired
by the feature found in the human brain. However,
ANN structure is not as complex as the human brain
neural network, but there are two similarities between
biological neural networks and ANN. First, a block
structure for both network is a simple counting
devices (even neural network much simpler than the
biological neural networks) and interconnected.
Secondly, the connectfion between neurons will
defermine the functfion of the neural network [5].
ANN is a model which uses a combination of
mathematical and simulation of biological neural
system to process the information obtained to get
the output in the form of predictions after the
network was trained according to the data change
pattern [6]. This system is able to recognize, capture
and frace the pattern contained in the data set
because of the high connectivity of neurons process
information in parallel [7]. Therefore, at present, ANN
approach be a valuable computational tool and is
increasingly being used fo solve complex problems
as an alternative to more traditional techniques [8].

In the simplest form, ANN consists of single
elements (neurons). Neurons or nerve will receive
external signals and synthesize these signals info
output signals. A simple conversion function is used in
this process. Artificial neural networks also can be
presented in a more complex form which contains a
number of neurons that are connected to each
other where the output signal from one neuron will
be the input signal fo one or more other neurons. The
interaction that occurs between a large numbers of
these neurons made ANN known as a model that
can handle complicated and complex problem [9].
The basic structure for ANN is shown in Figure 1.
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Figure 1 Basic structure of ANN

There are three different operations in a single
input neuron network. The first input is scalar, p will be
multiplied by the weight scalar, w fo form a product,
wp which is also a scalar. Both products, wp is added
to the bias scalar, b to generate a net input, n. The
function of the bias, b is equal to the weight, w but
the value of bias is 1 and fixed. Finally, net input, n will
be through the fransfer function, f to produce a
output scalar, a. The three processes are called 1)
the weight function, 2) net input function, and 3) the
fransfer function [10].

Multilayer feed-forward neural network is the most
widely used in prediction. It is train with a back-
propagation learning algorithm, is a well-liked neural
networks and it consists of neurons that are
prearranged into layers as shown in the Figure 2. The
first layer is a input layer, the last layer is the output
layer, where n is the number of nodes of the output
layer and the layers between are hidden layers [11].
It can contain more than one hidden layer but
theoretical work has shown that one hidden layer is
sufficient fo estimate any complex nonlinear function
[12].

Input layer Hidden layer Output layer

—

Outputs

N

Input

?

L4

Figure 2 Multilayer feed-forward neural network structure

Generally, mulfilayer feed-forward neural network
has multiple layers of input as xj, ( = 1,2, ... n) which
represents the input signal source. Each input can be
weighted before reaching the main body of the
processing elements (neurons in the hidden layer) by
the connection strength or weight, wj. Therefore, the

signal that is fransmitted via the connection strength
is equal to a part of the original signal, wjxj. In
addition, the input signal to the neuron must exceed
the threshold value, T or bias, b to generate neuronal
signals. After the impact of bias, b in the signals has
been weighted, nonlinear function, F will enter fo
nonlinear units and then produces an output which is
oufput can be input to other neurons [13].

The transfer function of the neural network is given
by Equation 1 below:

Oi = Fl( zl (wyx;,)j (1)
J=

provided the conditions of neurons are same as in
Equation 2 below:

r
> wixs = 1

i=1 (2)

where subscript i and j represents a disputed neurons
and input to the neuron respectively.

Radial basis function network is a type of feed-
forward neural network composed of three layers,
namely the input layer, the hidden layer and the
output layer. Each of these layers has different
tasks[14]. Figure 3 [15] show the radial basis function
neural network Structure.

Hidden layer
Input layer (Z neurons) Output layer
(M inputs) -

(J outputs)
VA
—

Figure 3 Radial basis function neural network structure

In the structure of the radial basis function
network, data input, X is a vector of I-dimensions will
be transferred to each hidden unit. The acftivation
function of the hidden unifs is symmetrical in space
for each input and output hidden units and is
dependent on the radial distance between the input
vector, X and the hidden unit. The output units for the
hidden, hiwhichi=1, 2, ..., i are as Equation 3 below:

hi (x) = ¢(llx — cill) )

where || || is Euclidean Norm, ci is central
neurons in the hidden layer and ¢( ) is the activation
function where it is nonlinear function such as a
gaussian kernel function, multiquadric, thinspline and
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exponential functions. Gaussian kernel function is a
popular function used as fransformer function in the
hidden layer. The activation Gaussian kernel function
are Expressed in equation 4:

¢>(x)=exp[— %} (4)

Where x is the fraining data and p is the width of
the Gaussian Kernel function. In radial basis function
neural networks, the outputs of the input layer are
determined by calculating the distance between the
network inputs and hidden layer . The second layer is
the linear hidden layer and outputs of this layer are
weighted forms of the input layer oufputs. Each
neuron of the hidden layer has a parameter vector
called center. The center and width of the kernel will
join with each hidden unit in the network. Weight that
connecting the hidden units and the output are
estimated by the least min squares method. Finally,
the reactfion of each hidden unit is scaled by the
weight of the connection to the output unit and it
summed fo generate a total output [16]. Therefore, k,
the output of yk is such in equation 5 below:

I
\ ZWU ¢ () + B (5)
=1

2.0 METHODOLOGY

This study is a contrived study using data measured
from a laboratory experiment. The research
framework of this study is shown in Figure 4.

Data Modsl Training and
N Collection [—* Preparation —*  Testing

Check
Staftsfically

Comparattve Model
Anilyss | Validation

Figure 4 Research framework of this study

A set of dynamic shear rheometer (DSR) test data
was used on a range of the bitumen-filler mastics with
three filler types (limestone, cement and grit stone)

and two filler concentrations (35 and 65% by mass).
The amount of data used in this study is 1583 data.
The data divided into three, namely 70% of the data
used for model training process. A total of 15% would
be used for model validation process and another
15% used for the testing process model. From 1583
data, a total of 1107 data used for the fraining
process model, data 238 to be used for model
validation process and 238 more data used for the
testing process model. The division of the data is
randomly according to the system used in MATLAB

The process involves in the ANN model
preparation are the determination of the number of
hidden layer in the models, the number of neuron in
each hidden layer and the transfer function of the
neural network multi-layer feed-forward and involves
the determination of the spread value of radial basis
function network. In MATLAB, each neural network
has also been designed as a GUI (graphical user
interface) with specific functions. This GUI that used in
the preparation of model.

There are two neural network model used in the
process of analyzing the data in this study name as
neural network model multi-layer feed-forward and
radial basis function network model. These models
select data, create and train networks, and evaluate
its performance using the mean squared error and
regression analysis.

For multilayer feed-forward neural network model
system has been designed in a toolbox. It can be
used by typing 'nffool' in the command window and
the algorithm that used in this model is the
Levenberg-Marquardt. Training on data can be
repeated until the optimal results of the R2 and MSE
obtained. The structure is a model that has been
designed asin Table 1.

Table 1 Structure of the network and the fransfer function of
ANN model

Subject Transfer function
Input Layer -
Hidden Layer Sigmoid
Output Layer Linear

Then, for radial basis function neural network has
been designed to function ‘newrb’ and will be called
as shown in Equation 6.

net = newrb (P, T, goal, spread, MN, DF) (6)

where:
P = input vector maftrix
T = target vector matrix
goal = mean squared error goal
spread = spread of radial basis function
MN = Maximum number of neurons
DF = number of neurons to display
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The optimal dispersion will produce the best
approximation of a function. However, many neurons
are needed to meet the rapid change if the
dispersion is too large. If dispersion is oo small, many
neurons are needed fo cater the function well or it
may not be able to produce a good network.
Therefore, newrb function shall be called by different
dispersion (spread) in order fo find the best solution fo
a problem.

From 1583 data, 70% of the data involved in the
fraining process as training set. Training set frained by
using specific fraining algorithms until it achieve a
minimum error. In the fraining process, the model try
to learn the relationship between the input data and
the oufput data and try minimized the difference
between the target data and the predicted data.
After that, further testing carried out to the other 15%
of the data. This test based on the developed model
in the training process. Training and testing process
repeatedly done by changing the model parameters
such as the number of neuron involve and the type
of membership function used until the analysis
produces an optimum output with the most minimum
error. The division of data either it involve in training
process or testing process is random.

Model validation process carried out after the
optimum output from the training and testing is
achieved. Validation is necessary fo ensure the
accuracy of the developed model. In this study,
coefficient of determination, R? is used to evaluate
the accuracy of the developed model. Meanwhile,
the mean absolute error (MAE), mean squared error
(MSE) and the root mean squared error (RMSE) is
calculate to determine the most accurate model to
predict the complex modulus, G* and phase angle, 6
of the bitumen filler mastic.

1. Coefficient of determination, R2

(RE — 1_ ?:1(x_y)z)

L —72
i:i{x Z}

2. Mean absolute error, MAE

1
_ n
(MAE T =t ‘}’|) (8)
3. Mean squared error, MSE
1
_.yn A (9)
[ =232 (5~

4. Root mean squared error, RMSE

(RMSE _ fM) (10)
T

Where x is predicted value, y is actual value, z is
average of actual value and n is number of data.

3.0 RESULTS AND DISCUSSION

Two models have been developed for muliilayer
feed-forward neural networks to prediction 1) the
value of the complex modulus, G*, and 2) the value
of the phase angle & of three different types of
bitumen filled mastic in terms of the percentage of
modifier and a control sample. Based on the results
obtained from these models, the best network
structure derived fo predict the value of the complex
modulus, G* and phase angle, 6 is 3-20-1 and 3-15-1.
Table 2 describes the network structure and the
fransfer function used in this network.

Table 2 Structure of the network and the transfer function of
mulfilayer feed-forward model

Complex Modulus, G* Phase Angle, §

Item No. of Transfer No. of Transfer
Neuron Function Neuron Function
Input 3 _ 3 )
layer
Hidden Log- Log-
20 . . 15 . .
layer sigmoid sigmoid
Output 1 Linear 1 Linear
layer

Proportions graph are plotted to compare the
results derived from developed model and
experimental results in the laboratory.

Result for Multilayer Feed-Forward Neural Network

Figures 5 show the predicted values against actual
values of complex modulus, G* while Figure é shows
the predicted values against actual values of phase
angle, 6 of bitumen filler mastic using multilayer feed-
forward model. The point that scattered in the Figure
5 shows the proportion between predicted data and
actual data, while a straight line present as a
corresponding line that shows similarities between the
actual data and predicted data. From Figure 5 and
6, the predicted value using this network model
approached perfection where the value of
coefficient of determination, R? for both is closer to
1.00 in the range of 0.98 to 1.00.

The mean absolute error (MAE) was used to
calculate the average error between the actual
data and predicted data. The MAE obtained from
the calculation is 623 kPa for the modulus complex,
G* and 0.76° for the phase angle, §. The small value
of MAE shows that the structure of the network model
has been designed with good form. Mean squared
error (MSE) is similar with the square root of the mean
error (RMSE).The RMSE obtained is 1778 kPa for the
complex modulus, E* and 1.26° to the phase angle &
the value of which is used to measure the accuracy
of the model.
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Figure 5 Graph of predicted value against actual value for
complex modulus, G* using multilayer feed-forward neural
network model
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Figure 6 Graph of predicted value against actual value for
of phase angle, &6 using mulfilayer feed-forward neural
network model

Result for Radial Basis Function Neural Network

The best results for models that have been
developed were obtained from the determination of
spread values through frial and error method. Figures
7 show the predicted values against actual values of
complex modulus, G* while Figure 8 shows the
predicted values against actual values of phase
angle, & of bitumen filler mastic using radial basis
function model. This model is also good in predict the
value of the complex modulus, G* and phase angle,
6 as the value of R? obtained were approaching 1.
The values are 0.9968 and 0.9929 respectively.

The average error between the predicted data
and the actual data or MAE value is small which is
868 kPa for the modulus complex, G* and 0.676° for
the phase angle, § while the MSE for the complex
modulus, G* and the phase angle, 6 is 3.476E+12 Pa
and 1.114°, respectively. The value will be squared to
get RMSE of 14421 kPa of the complex modulus, G*
and 1.026° for the phase angle, &. Figure 7 also shows
that the majority of such data is on the line where it is
shown that the predicted data is directly proportional
to the actual data.
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Figure 7 Graph of predicted value against actual value for
complex modulus, G* using radial basis function neural
network model

100

. RY  + 0.9929
o 0| MAE = 0676 O
= 80 MSE = 1.114 . s
= RMSE |= 1.026 2

S 70 i

3 L

Z 60

i e

s -

T 40 S -

£ q

- 30

-

ﬁ 20

T 10

2

=9

(=}

0 10 20 30 40 50 60 70 80 90 100
Actual data for phase angle, 3 (*)

Figure 8 Graph of predicted value against actual value for
of phase angle, & using radial basis function neural network
model

Statistical Analysis

Based on the analysis, it can be proved that the
developed models are able to predict the complex
modulus, G* and phase angle, § of bitumen filler
mastic well. This is shown on Table 3, where the value
of R? for both model is closer to 1.00 in the range of
0.98 to 1.00. This value indicates that both models
have high accuracy in making the prediction.

Comparison between the two models the value
of Rz for radial basis function neural network model is
higher than multilayer feed-forward neural network
model as the value is almost approaching 1.00.
Besides, the MAE, MSE and RMSE of radial basis
function neural network model also lower than
multilayer feed-forward neural network model. With
this reasons, it can be concluded that radial basis
function neural network model can predict the
complex modulus, G* and phase angle, § better
than the multilayer feed-forward neural network
model because high R? value and a small RMSE
values shows that the accuracy of the model is very
high [18].
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Table 3 Values for R2, MAE, MSE and RMSE

R? MAE MSE RMSE

Complex modulus, G*:
Multilayer
feed-foward 09956  ¢23856 4.893E+12 1778812
neural network
model.

Radial basis

function 0.9968 86425 4.476E+12 1442195
Neural

network

model

Phase angle, &:
Multilayer

feed-forward 0.9888  0.763 1.864 1.265
neural network
model.

Radial basis

function 0.9929 0.676 1.114 1.026
Neural

network

model

Comparisons have been made with studies
performed by Hamim [16] on the study of rheological
properties of asphalt mixture using artificial neural
network. This study also uses two types of ANN model
of neural network namely multi-layer feed-forward
network and radial basis function to predict dynamic
modulus, E* and the phase angle, 6 for asphalt
pavement. Results from this study are shown in Table
5.

Table 4 The Coefficient of Determination Value, R2

ltem R?
Complex modulus, E*

Mulfi-Layer Feed-Forward Network  0.9947
Radial Basis Function Network 0.9953
Phase angle, §

Multi-Layer Feed-Forward Network  0.9977
Radial Basis Function Network 0.9997

From Table 4, it can be seen that the developed
model in this study has a very high accuracy in
predicting the value of the complex modulus, G* as
the average value of R2 generated is very close to
the value of 1.0 compared to the value of R? to the
dynamic modulus, E* generated in Table 5. However,
in this study the average R? value obtained is low in
predicting the value of the phase angle, &
compared with the values in Table 4, which is in the
range of 0.9888-0.9929. This occurs because the
experiments conducted by Hamim [16], complex
modulus data that used is in the range of hundred
while the complex modulus data developed in this
study were within the range of millions. Furthermore,

the number of neurons in the hidden layer of the
phase angle used in the Hamim's study is 11, while
the number of neurons in the hidden layer used in this
study is 15. The range of data and no of neurons in
the hidden layer are the factors that influence the
accuracy of ANN model [19].

In addition, comparisons were also made on the
RMSE value obtained from this study and studies that
have been conducted by Xiao et al. [20]. It was
found that RMSE obtained from previous studies in
measuring the stiffness behavior of rubberized
asphalt  concrete mixture of cryogen at a
temperature of 5 °C is 0.81 MPa, which is in the range
of stiffness values between 0 to 30 MPa.

The RMSE value is 2.7% of the maximum range of
the strength of the mixture. While in this study, the
average RMSE values obtained for the complex
modulus of both models is of 1.61 MPa in the range of
stiffness values between 0 to 255.63 MPa and is 0.63%
of the maximum range value of the stiffness. From the
comparison that has been made, it was found RMSE
for this study is lower compared to studies conducted
by Xiao et al. [20] The lower RMSE value is preferable
to developed a model.

4.0 CONCLUSION

In conclusion, it was found that the analysis process
shows that radial basis function neural network model
had a better accuracy in the prediction of the
complex modulus, G* and phase angle, § compared
to mulfilayer feed-forward neural network model.
These studies also reinforces the evidence that the
neural network model either radial basis function
neural network model or multilayer feed-forward
neural network model is able to predict the complex
modulus, G* and phase angle, § for the bitumen filler
mastic well and it can be inferred that the neural
network models have an excellent potential to
replace the existing analytical and empirical models
in predicting the rheological properties of bitumen
filler mastic.
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This study was conducted to develop two types of artificial ne@e’rwoﬂ( [ANN] model
to predict the rheoclogical properties of bitumen-filler mastic in ferms of the complex

ulus_and phase angle. Two fypes of ANN models were developed namely; (i) a
\ mulﬁlayfaad-fomard al network model and (i} a radial basis function network
‘j-'_' model. This study was c;‘lﬁ conducted fo evaluate the accuroacy of both types of
Dutputs models in predicting the rheological properti bitumen-filler mastics by means of
statistical parameters such as the coefficient of determination (R2), mean absclute emror
[MAE), mean squared emor [MSE] and_root mean squared error [RMSE) for ry
developed model. A set of dynamic sh rheometer (DSR) test dato waos used on a
range of the bitumen-filer mastics with three filer types (limestone, cement and grit
stone) and two filler concentrati |35 and 65% by mass). Based on the analysis
performed, it was found that both models were able to predict the complex modulus
and phase angle of bitumen-filler mastics with the average R? value exceeding 0.98. A

parison between the two types of models showed that the radial basis function
network mc@ has a higher accuracy than multilayer feed-forward neurrmehvork
model with a higher value of Rz and lower value of MAE, MSE and RMSE. It can be
concluded that the ANN model can be used as an alternative method to predict the
rheological properties of bitumen-filler mastic.

11

Inpat liyer

P,

Keywords: Artificial neural network, multilayer feed-forward neural network, radial basis
function network, complex modulus (G*) and phase angle (5)

Abstrak

Kajian ini dijalankan untuk membangunkan dua jenis peramalan model berdasarkan
pendekatan rangkaian neuron tivan [ANN) untuk meramalkan sifat-sifat reclogi mastik-
pengisi bitumen dari segi modulus dan sudut fasa yang kompleks. Dua jenis model ANN
telah dibangunkan iaitu; (i} suatu model rangkcian neural galakan ke hadapan
pelbagai lapisan dan (i) model rangkaian fungsi asas jejarian. Kajian ini juga dijalankan
untuk menilai ketepatan kedua-dua jenis model untuk meramalkan sifatsifat reclogi
mastik pengisi bitumen melalui parameter statistik seperti pekali penentuan tertinggi
(R2), min ralat mutlak terkecil (MAE), min ralat kuasa dua | MSE) dan punca min ralat
kuasa dua (RMSE) untuk setiap model yang dibangunkan. Satu set dinamik reometer
ricih [DSR] ujian data telah digunakan dalom penentuan mastic pengisi bitumen
dengan tiga jenis pengisi (batu kapur, simen dan batu kersik) dan dua kepekatan
pengisi (35 dan 65%). Berdasarkan analisis yang dijalankan, didapati bahawa kedua-

80:1 (2018) 71-78 | www.jumalteknologi.utm.my | elSSN 2180-3722 |




72 Razuhanafi et al. / Jumal Teknologi (Sciences & Engineering) 80:1 (2018) 71-78

dua model dapat meramalkan modulus dan sudut fasa mastik pengisi bitumen
dengan nilai R? purata melebihi 0.98. Perbandingan antara kedua-dua jenis model
menunjukkan bahawa asas fungsi model rangkaian jejarian mempunyai ketepatan
yang lebih finggl daripada model pelbagai lapisan rangkcian neural galakan ke
hadapan dengan nilai yang lebih tinggi daripada R? dan nild yang lebih rendah
daripada MAE, MSE dan RMSE. Dapat disimpulkan bahawa model ANN boleh
digunakan sebagai kaedah altemnatif untuk meramalkan sifat-sifat reclogi mastic

pengisi bitumen.

Kafa kunci: Rangkaian neural tiruan, rangkaian neural galakan ke hadapan, rangkaian
fungsi asas jejar, modulus kompleks (G*) dan sudut fasa (§)

© 2018 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Therefore, an effective road design is required to
ensure the people life to be more efficient. The road
pavement must be designed for a long time with few
maintenance requirements [1]. The stiffness of
asphalt pavement is depending on the thickness of
each layer of pavement design methods and the
type of filer used. But the basic design of the
pavement is dependent on the frequency of the

avement is exposed to the vehicle load, ground
bporf conditions and weather conditions. The
flexural stiffness of the pavement is also closely
related to various aspects such as rutting, the
modulus of resilience and fatigue. All these aspects
can be seen through the rheoclogical properties.
Bitumen-filler mastic is a combination of bitumen and
mineral fillers that highly influenced it rheoclogical
properties [2]. Bitumen is a thermoplastic material
that binds the aggregate to be in stable and strong
condition while the mineral filler material serves to fill
the dirspaces between aggregate and bitumen to
improve the viscosity of the bitumen thus increase
the pavement durability.

When the bitumen filer mastic are subjected to
the burden current or persistent pressure, it will
react in an elastic at low temperatures, viscous-
elastic at moderate temperatures and viscous at
high temperatures to which it is closely related to the
stiffness. With the presence of filler mastic, the flexural
stiffness of the bitumen will last longer because the
main goal is to harden the bitumen in order to
reduce the viscoelastic reaction of asphalt mixture or
improving the elastic component and reduces the
viscous component of bitumen.

Rheology refers to the study of the flow and
deformation of materials under rce applied
routinely measured through the dynamic shear
Rheometer (DSR) and dynamic mechanical analysis
(DMA) tests. The DSR test (AASHTO T31EER) was used
for measuring the viscoelastic properties of
bituminous binders for a wide range of fempercares
and frequencies (loading time) while the DMA is used
to detect the rheological properties of the dynamics
of bitumen through the test of the swing using the
rheocmeter to understand the nature of viscous and

elos bitumen (various temperature and load rate)
[3]. However, recognising that festing is generally
laborious, fime consuming and expensive, and
(B uiring skilled operators [4]. Predictive m@els such
an arfificial neural network (ANN) model can be a
valuable alternative  tool for quantifying the
rheological properties of bituminous binders including
bitumen-filler mastics.

Artificial Neural Network [ANN) has been inspired
by the feature found in the human brain. However,
ANN structure is no complex as the human brain
neural network, but there are two similarities between
biological neural networks and AMN. First, a block
structure for both network is a simple counting
devices (even neural network much simpler than the
biological neural networks}mwd interconnected.
Secondly, the connection between neurons will
determine the function of the neural network [5].
ANN is a model which uses a combination of
mathematical and simulation of biclogical neural
system to process the information obtained to get
the output in the form of predictions after the
network was frained according to the data change
pattern [6]. This system is able to recognize, capture
and trace the pattern contained in the data set
because of the high connectivity of neurons process
information in parallel [7]. Therefore, at present, ANN
prooch be a valuable computational tool and is
increasingly being used to solve complex problems
as an alternative to more traditional techniques [8].

In the simplest form, ANN consists of single
elements (neurons). Neurons or nerve will receive
external signals and synthesize these signals into
output signals. A simple conversion function is used in
this process. Arfificial neural networks also can be
prasented in a more complex form which contains a
number of neurons that are connected to each
other where the output signal from one neuron will
be the input signal to one or more other neurons. The
interaction that occurs between a large numbers of
these neurons made ANN known as a model that
can handle compliccm and complex problem [9].
The basic structure for ANN is shown in Figure 1.
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a=f(wp+b)

Figure 1 Basic structure of ANN

There are three different operations in a single
input neuron network. The first irm is scalar, p will be
multiplied by the weight scalar, w to form a product ,
wp which is also a scalar. Both products, wp is added
to the bias scalar, b to generate a net input, n. The
function of the bias, b is equal to the weight, w but
the value of bias is 1 and fixed. Finally, net input, n wil
be through the transfer function, f to produce a
output scalar, a. The three processes are called 1)
the weight function, 2) net input function, and 3) the
transfer function [10]. d

Multilayer feed-forward neural network is the most
widely used in prediction. It is train with a back-
propagation learning algorithm, is a well-liked neural
networks and it consists of PEbrons that are
prearanged into layers as shown in the Figure 2. The
first layer is a input IdE, the last layer is the output
layer, where n is the number of nodes of the output
layer and the layers between are hidden layers [11].
It can contain more than onemdden layer but
theoretical work has shown that one hidden layer is
sufficient fo estimate any complex nonlinear function
[12].

Input layer Hidden Inver

Output layer

N

Input

!

57
ulfilayer feed-forward neural network structure

=

Figure 2

Generdally, multiayer feed-forward neural network
has multiple layers of input as xj, (j = 1.2, ... n) which
represents the input signal source. Each inputf can be
weighted before rechng the main body of the
processing elements (neurons in the hidden layer) by
the connection strength or weight, wj. Therefore, the

signal that is tfransmitted via the connection strength
is equal to a part of the orginal signal, wjxj. In
addition, the input signal to the neuron must exceed
the threshold value, T or bias, b to generate neurcnal
signals. After the impact of bias, b in the signals has
been weighted, nonlinear function, F will enter to
nonlinear units and then produces an cutput which is
output can be input to other neurons [13].

The transfer function of the neural network is given
by Equation 1 below:

Oi= Fi( _2-] (Wi )] ()
J=

provided the conditions of neurons are same as in
Equation 2 below:

T
> wixy = 17
i—1 (2)

where subscript i and | represents a disputed neurons
and input to the neuron r ctively.

Radial basis function network is a type of feed-
forward neural network composed of three layers,
namely the input layer, the hidden layer and the
output layer. Each of these rs has different
tasks[14]. Figure 3 [15] show the radial basis function
neural network Structure.

Hidden layes
Tpunt layer {f newrons) Output layer
(M inpuns) = b . (o outputs)
1
v/
- Y

%
1

- Wa &)

Pa

Figure 3 Radial basis function neural network structure

In the sfructure of the radial basis function
network, data ifBut, X is a vector of I-dimensions will
be fransferred to each hidden unit. The activation
function of the hidden unifs is syrnmetrical in space
for each iui and oufput hidden units and is
dependent on the radial distance between the input
vector, X and the hidden unit. The output units for the
hidden, hi whichi=1, 2, ..., i are as Equation 3 below:

hi (x) = ¢(llx —cill) (3)

wher| | | is Euclidean Norm, ci is central
neurons in the hidden layer and ¢( | is the activation
function where it is nonlinear function such as a
gaussian kernel function, multiquadric, thinspline and
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exponential functions. Gaussian kemd&Rlnction is a
popular function used as transformer function in the
hidden layer. The activation Gaussian kernel function
are Expressed in equation 4:

|| x-ci||?

(IJ(x):exp[— T] (4)

Where x is the fraining data and p is the width of
the Golsian Kernel function. In radial basis function
neural networks, the outputs of the input layer are
determined by calculating the distance befween the
network inputs and hidden layer . The second layer is
the linear hidden layer and outputs of this layer are
weighted forms of the input layer outputs. Each
neuron of the hidden layer has a parameter vector
called cf@er. The center and width of the kernel will
[@n with each hidden unit in the network. Weight that
connecting the hidden units and the output are
estimated by the least min squares method. Finally,
the reaction of each hidden unit is scaled by the
weight of the connection to the cutput unit and it
summed fo generate a total output [14]. Therefore, k,
the output of yk is such in equation 5 below:

T
Vi ZWU Pi(x) + By (5)

i=1

2.0 METHODOLOGY

This study is a contfrived study using data measured
from a laboratory experiment. The research
framewaork of this study is shown in Figure 4.

Data Model Training and ~ jg,

N Collecion [—® Preparation [—®  Testing

Check
Statisically

Comparative Model
Amalyés Y| Validaion

Figure 4 Research framework of this study

A set cadyncmic shear rheometer (DSR) test data
s used on arange of the bitumen-filler mastics with
three filler types (limestone, cement and grit stone)

and two filler concenirations (35 and 65% by mass).
The amount of data used in this study is 148 data.
The data divided into three, namely 70% of the data
used for model fraining process. A total of 15% would
be used for model validation process and another
15% used for the testing process model. From 1583
data, a total of 1107 data used for the training
process model, data 238 to be used for model
validation process and 238 more data used for the
testing process model. The division of the data is
randomly according to the system used in MATLAB

The process irffblves in the ANN model
preparation are the determination of the number of
hidden layer in the models, the number of neuron in
each hidden layer and the fransfer function of the
neural network multi-layer feed-forwar d involves
the determination of the spread value of radial basis
function network. In MATLAB, each neural network
has also been designed as a GUI (graphical user
interface) with specific functions. This GUI that used in
the preparation ofm)del,

There are two neural neiwcm-nodel used in the
process of analyzing t ata in this study name as
neural network model multi-layer feed-forward and
[flial basis function network model. These models
select data, create and frain networks, and evaluate
its performance using the mean squared error and
regression onolys

For multilayer feed-forward neural network model
system has been designed in a toolbox. It can be
used by typing 'nftool’ in the command window and
the algorithm that used in this model is the
Levenberg-Marquardt. Training on data can be
repeated until the optimal results of the R? and MSE
obtained. The structure is a model that has been
designed as in Table 1.

Table 1 Structure of the network and the fransfer function of
ANN model

ubject Transfer function
Input Layer
Hidden Layer Sigmoid
Output Layer Linear

Then, for radial basis function neural network has
been designed to function ‘newrb’ and will be called
as shown in Equation 6.

net = newrb (P, T, goal, spread, MN, DF) (é)

where:
&8 = input vector matrix
T = &ef vector matrix
goal =mean squared error goal
spread = spread of radial basis function
MN = Maximum number of neurons
DF = number of neurons to display




7
75 Razuhanafi et al. / Jumal Teknologi (Sciences & Engineering) 80:1 (2018) 71-78

The optimal dispersion wil produce the best
approximation of a function. However, many neurons
are needed fto meet the rapid change if the
dispersion is too large. If dispersion is too small, many
neurons are needed fo cater the function well or it
may not be able to produce a good network.
Therefore, newrb function shall be called by different
dispersion (spread) in order to find the best solution to
a problem.

From 1583 data, 70% of the data involved in the
fraining process as fraining set. Training set frained by
using specific training algorithms until it achieve a
fydhimum error. In the fraining process, the model try
to learn the relationship between the input data and
the output data and try minimized the difference
between the target data and the predicted data.
After that, further testing cared out to the other 15%
of the data. This test based on the developed model
in the training process. Training and testing process
repeatedly done by changing the model parameters
such as the number of neuron involve and the type
of membership function used until the analysis
produces an optimum output with the most minimum
error. The division of data either it involve in fraining
process or testing process is random.

Model validation process caried out after the
opfimum output from the fraining and testing is
achieved. Validation is necessary to ensure the
accuracy of the developed model. In this study,
coefficient of determination, R? is used to evaluate
the m:urocy of the developed model. Meanwhile,
mecn absolute error (MAE), mean squared error
(MSE) and the root mean squared error (RMSE) is
calculate t@Hetermine the most accurate model to
predict the complex moedulus, G* and phase angle, &
of the bitumen filler mastic.

1. Coefficient of determination, R2

(Rz PR NC)) ) )

T (-2

2. Mean absolute error, MAE

1
(MAE = gl ‘}’|) (8)
3. Mean squared error, MSE
bom o2 (9)
[sE =3 r-)?)

4. Root mean squared error, RMSE

(RMSE _ [ (x—y)Z) (10)
n

Where x is predicted value, vy is actual value, z is
average of actual value and n is number of data.

3.0 RESULTS AND DISCUSSION

Two models have been developed for multilayer
feed-forward neural networks to prediction 1) the
value of the complex modulus, G*, and 2) the value
of the phase angle & of three different types of
bitumen filled mastic in terms of the percentage of
modifier and a conirol sample. Based on the results
obtained from these models, the best network
cture derived to predict the value of the complex
modulus, G* and phase angle, § is 3-20-1 and 3-15-1.
Table 2 describes the network structure and the
fransfer funcﬁon.m.ed in this network.
62
Table 2 Structure of the network and the fransfer function of
multilayer fezﬁorward model
&1

Complex Modulus, G* Phase Angle, §
Item No. of Transfer No. of Transfer
Neuron Function Neuron Function
Input 3 i 3
layer
Hidden 20 . Log-l 15 . Log-l
layer sigmoid sigmoid
Output . .
layer 1 Linear 1 Linear

Proportions graph are plotted to compare the
Its derived from developed model and
expernmental results in the laboratory.

Result for Muliilayer Feed-Forward Neural Network

Figures 5 show the predicted values against actual
values of complex modulus, G* while Figure é shows
the predicted values against actual values of phase
angle, & of bitumen filler mastic using multilayer feed-
forward model. The point that scattered in the Figure
5 shows the proportion between predicted data and
actual data, while a straight line present as a
corresponding line that shows similarities between the
actual data and predicted data. from Figure 5 and
6, the predicted value using this network model
approached perfection where the value of
coefficient of determination, R? for both is closer to
1.00in the range of 0.98 to 1.00.

The mean absolute error (MAE) was used to
calculate the average error between the actual
data and predicted data. The MAE obtained from
the calculation is 623 kPa for the modulus complex,
G* and 0.76° for the phase angle, &. The small value
of MAE shows that the structure of the [fBhwork model
has been designed with good form. Mean squared
error (MSE) is similar with the square root of the mean
error (RMSE).The RMSE obtained ia 778 kPa for the
complex modulus, E* and 1.26° to the phase angle &
the value of which is used to measure the accuracy
of the model.
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Result for Radial Basis Function Neural Network

The best results for models that have been
developed were obtained from the determination of
spread values through frial and error method. Figures
7 show the predicted values against actual values of
complex modulus, G* while Figure 8 shows the
predicted values against actual values of phase
angle, & of bitumen filler mastic using radial basis
funch’ model. This model is also good in predict the
value of the complex modulus, G* and phase angle,
& as the value of R? obtained were approaching 1.
The values are 0,@ and 0.9929 respectively.

The average error between the predicted data
and the actual data or MAE value is small which is
868 kPa for the modulus complex, (ﬂcnd 0.676° for
the phase angle, & while the MSE for the complex
modulus, G* and the phase angle, & is 3.476E+12 Pa
and 1.114°, respectively. Trnvolue will be squared to
get RMSE of 14421 kPa of the complex modulus, G*
and 1.026° for the phase angle, é. Figure 7 also shows
that the majority of such data is on the line where it is
shown that the predicted data is directly proportional
to the actual data.
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Figure 7 Graph of predicted value against actual value for
complex modulus, G* wing radial basis function neural
network model
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Figure 8 Graph of predinad value against actual value for
of phase angle, & using radial basis function neural network
model

Statfistical Analysis
Based on the analysis, it can be proved that the
developed models are able to predict the complex
modulus, G* and phase angle, & of bitumen filler
mastic well. This is shown on Table 3, where the value
of R? for both model is closer to 1.00 in the range of
0.98 to 1.00. This value indicates that both models
have high accuracy in making the prediction.
Comrison between the two models the value
of R? for radial basis function neural network model is
higher than multilayer feed-forward neural network
model as the value is almost approaching 1.00.
Besides, the MAE MSE and RMSE of radial basis
wehction neural network model also lower than
multilayer fe@orword neural network model. With
this reasons, it can be concluded that radial basis

nch’on neural nefwork model can predict the

complex ulus, G* and phase angle, & better
than the muliilayer feed-forward neural network
model because high R? value and a small RMSE
values shows that the accuracy of the model is very
high [18].
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Table 3 Values for RZ MAE, MSE and RMSE

R2 MAE MSE RMSE

Complex modulus, G*
Multilayer

feed-forward 9954 423856 4893E+12 1778812
neural network

model.

Radial basis

function 0.99468 B6425 4.476E+12 1442195
Neural

network

model

Phaose angle, &:
Multilayer
feed-forward 09888  0.763 1864 1.265
neural network
model.

Radial basis

function 0.9929 0.676 1.114 1.024
Neural

network

model

Comparsons have been made with studies
performed by Hamim [14] on the study of rheclogical
properties of asphalt mixture using artificial neural
network. This study also uses two types of ANN model
of neural network namely multidayer feed-forward
network and radial basis function to predict dynamic
modulus, E* and the phase angle, & for asphalt
pavement. Results from this study are shown in Table
5.

Table 4 The Coefficient of Determination Value, R?

ltem R?
Complex modulus, E*

Multi-Layer Feed-Forward Network  0.9947

Radial Basis Function Network 0.9953
se angle, &

Multi-Layer Feed-Forward Network  0.9977

Radial Basis Function Network 0.9997

From Table 4, it can be seen that the developed
model in this study has a very high accuracy in
predicting the value of the complex modulus, G* as
the average value of R? generated is very close to
the value of 1.0 compared to the value of R? to the
dynamic modulus, E* generated in Table 5. However,
in this study the average R? value obtained is low in
predicting the wvalue of the phase angle, é
compared with the values in Table 4, which is in the
range of 0.9888-0.992%. This occurs because the
experiments conducted by Hamim [14], complex
modulus data that used is in the range of hundred
while the complex modulus data developed in this
study were within the range of millions. Furthemore,

the number of neurons in the hidden layer of the
phcmcmgle used in the Hamim's study is 11, while
the number of neuronsin the hidden layer used in this
study is 15. The range of data and no of neurons in
the hidden layer are the factors that influence the
accuracy of ANN model [19].

In addition, comparisons were also made on the
RMSE value obtained from this study and studies that
have been conducted by Xiao et al. [20]. It was
found that RMSE obtained from previous studies in
measuring the sfiffness behavior of rubberized
asphalt  concrete mixture of cryogen at a
temperature of 5°C is 0.81 MPa, which is in the range
of stiffness values between 0 to 30 MPa.

The RMSE value is 2.7% of the maximum range of
the strength of the mixture. While in this study, the
average RMSE values obtained for the complex
modulus of both models is of 1.61 MPa in the range of
stiffness values between 0 to 255.63 MPa and is 0.63%
of the maximum range value of the stiffness. From the
comparison that has been made, it was found RMSE
for this study is lower compared to studies conducted
by Xico et al. [20] The lower RMSE value is preferable
to developed a model.

4,0 CONCLUSION

In conclusi it was found that the analysis process
showmof radial basis function neural network model
nld a better accuracy in the prediction of the
complex modulus, G* and phase angle, 6 compared
to multilayer feed-forward neural network model.
These studies also reinforces the evidence that the
neural network model either radial basis function
neural network model r multilayer feed-forward
neural network model is able to predict the complex
meodulus, G* and phase angle, & for the bitumen filler
mastic well and it can be inferred that the neural
network models have an excelent potential to
replace the existing analytical and empirical models
in predicting the rheological properties of bitumen
filer mastic.
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Bayu ardiansah 5 months ago

Jurnal Teknologi provides online submission to every manuscript.

All activities should be done through online. After submission, you will get notification. Once
submitted (during review process), authors will not be able to retract the paper (may be this is
ethical), and not allowed to submit manuscript to other journals until review process has been

done (got notification of acceptance/rejection/revision).

In my case (https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/13243) , all
process need about 5 months waiting. And it no problems.

Probably, T month is very short to wait. Ans note that, this is journal from scientific community (by
UTM), non provit organization, so they will do carefully, and may be, need longer review process..

Hope this explanation help.
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Susilawati 6 months ago

We submitted the manuscript on Jurnal Teknologi, however, after 1 month waiting, we did not get
any notification. So, we withdraw the manuscript and send it to another journal. However, that
another journal found that our similarity index was 97% since Jurnal Teknologi save our work on
their Turnitin database as student paper of UTM Repository...What??? We are not even students
from UTM!! So, another journal rejected our paper due to that occasion, they suggested us to
remove our paper first from UTM database. However, Jurnal Teknologi does not want to delete it
(maybe they forget the Turnitin ID of checking), even when we ask for the ID, and the funny things
that UTM Turnitin operator also ask us to request the ID from Jurnal Teknologi UTM, still Jurnal
Teknologi does not want to give the ID. We just want to get the ID and remove it!! It seems like we
need to paraphrase everything...... Therefore | report this here, so anyone who wants to submit to
Jurnal Teknologi can consider my experience, and ask the editor first not to save the manuscript to

their Turnitin Database.
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