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Abstract. Lung cancer was the most commonly diagnosed cancer as well as the leading cause
of cancer death in males in 2008 globally. The way used to detect lung cancer are through
examination chest X-ray, Computed Tomography (CT) scan, and Magnetic Resonance Imaging
results. The accurate and efisien analysis of the imaging results are important to ensure the
minimal time processing. A computed assisted diagnosis system is the crusial research which
can conduct the analysis efficiently and efectively. This paper aimed to compare the
classification performances of Multi Layered Perceptron (MLP) and Radial Basis Function
(RBF) techniques. The public lung cancer datasets was used as training and testing data in the
classfication techniques. Ten fold cross validation was used for dividing data before classifying
techniques. The accuracy performances are compared to check a better technique for
classification step.

1. Introduction

Lung cancer is the cancer which more @n causes men to die than other cancers, which are often the
cause of cancer the lungs are smoking. Lung cancer was the most commonly diagnosed cancer as well
as the leading cause of cancer death in males in 2008 globally [1]. The high risk of death of the patient
lung disease showed that this type of disease needs to be taken seriously. 5 is related to a lack of
awareness the public will be the health of the lungs. Moreover, currently, air pollution is increasing
that due to smoke from active smokers, smoke industrial plants, motor vehicle fumes, and various
other pollutants. The polluted air when inhalation can cause health conditions the lungs are disturbed.
Lung cancer is basically a tumor malignant of the bronchial epithelium. The process of malignancy on
this bronchial epithelium will be preceded by what is called pre-cancerous times. The first cPfinge
occurring in pre-cancerous times is referred to as squamous metaplasia characterized by changes in the
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shape of the epithelium and the disappearance of cilia. This squamous metaplasia can result in various
influences from outside the body, such as sucking gases and smoke like that contained in cigarette
smoke and some chemicals industrial results.

Overview of machine learning (ML) (called deep learning emerged in the computer visicffield) in
medical imaging are presented in Suzuki (2017), Lundervold & Lundervold (2019) [2], [3]. The use of
the deep learning has been increasing rapidly in the medical Eaging field, including computer-aided
diagnosis (CAD), radiomics, and medical image analysis. In recent years, the deep learning has
emerged as a powerful alternative to designing solution for pattern recognition applications by using
neural networks, which can learn a representation of data from the raw data itself. The most used
incarnation of deep neural networks are convolutional networks [4], a supervised learning algorithm
particularly suited to solve problems of classification of natural images [5], which has recently been
applied to sorfe} applications in chest CT analysis [6]. The deep learning has used for biomedical
application in automatic pulmonary nodule management in lung cancer screening [6]-[8]. An assisted
diagnosis system has been built for detection of early pulmonary nodule in computed tomography
images [9].

Different artificial neural network (ANN) architectures such as Recurrent Neural Networks (RNNs),
Radial Basis Function (RBF) [10] and Multilayered Perceptron (MLP) [11] have all been proposed in
the literature for pattern classification problems. Currently, ANN is often used for pattern recognition
for lung cancer data [12], [13], [22]{24], [14]-{21].

MLP and RBF well suited for function approximation and pattern recognition due to their simple
topological structure [L0]. There are several studies have used the RBF neural network in their
biomedical application research [25]-[28]. Meanwhile, MLP is used by several studies [11], [29], [30].
Based on the literature review about the use of the ANN in deep learning, this research aims to
compare the performance of both neural network structures to differentiate lung cancer data. The
result of this research is used for the next research planning.

2. Methodology

In this research, datasets from database of medical data freely access were used for input to neural
network. The data consisted of 32 samples which have 56 features for three classes of output nodes.
The 56 features as input for the input nodes, several hidden and epoach node sets, and three output
nodes were determined for the structure of the neural networks. The multi layered percepton-Levemn
Marquat (MLP-LM) neural networks and radial basis function (RBF) were used for classification
steps. The MLP-LM and RBF performances were compared the rdflilts of accuracies. The detail
structure of MLP-LM and RBF are presented in figure 1. The MLP neural network also consisf of
three layers (figure la). The detailed of the MLP can be sh@§n in our published paper [29]. RBF
Neural Network (RBFNN) consists of three layers (figure 1b). Usually, the nonlinear transfer function
in hidden node is chosen as Gaussian transfer function. Values of hidden nodes are derived from (4)
and the output of the RBFNN is calculated using (5) in published paper [10].
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Input layer ~ Hidden layer Output layer

(a) Multi Layered Percepton-Levern Marquard [29].

Input layer Hidden layer Qutput layer

(b) Radial Basis Function Structure [10].
Figure 1. The detail structure of MLP and RBF neural network.

3. Results and Discussions

Results of both neural networks are tabulated in table 1. The lung cancer data are arranged in to three
datasets to test the performance of the neural networks. Epoch nodes are applied in the four modes
(Le. 1, 5, 10, 20) then the hidden nodes are applied in four modes (5, 10, 20, 30). As shown in table I,
performance of MLP network achieved accuracy of 80% to 93% in dataset 1. The accuracy values are
80% for the epoch set | and hidden node set 5. The accuracy values are 93% for the epoch set 5 and
hidden node set 10. The accuracy values are 80% for the epoch set 10 and hidden node set 20. The
accuracy values are 80% for the epoch set 20 and hidden node set 30. The performance of MLP
network achieved accuracy of 60% to 80% in both dataset 2 and dataset 3. For dataset 2, the accuracy
values are 60% for the epoch set 1 and hidden node set 5. The accuracy values are 80% for the epoch
set 5 and hidden node set 10. The accuracy values are 60% for the epoch set 10 and hidden node set
20. The accuracy values are 70% for the epoch set 20 and hidden node set 30. Meanwhile in dataset 3,
the accuracy values are 80% for the epoch set 1 and hidden node set 5. The accuracy values are 60%
for the epoch set 5 and hidden node set 10. The accuracy values are 60% for the epoch set 10 and
hidden node set 20. The accuracy values are 80% for the epoch set 20 and hidden node set 30. The
averages of the MLP performance is 74% of accuracy.
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For the RBF network performances, the accuracy values are achieved in range 70% to 80% of
accuracy. As shown in table 1, the accuracy values are 80% for the used epoch set 1 to 20 and the used
hidden node set 5 to 30 in dataset 1. Meanwhile, in both dataset 2 and dataset 3, the accuracy values
are 70% for all the used epochs and hidden nodes. The averages of the RBF performance is 73% of
accuracy.

Table 1. Comparison Performances of
Radial Basis Function and Multi Layered
Perceptron

Datasets Epoch HN RBF MLP

1 5 80 80

5 10 80 93

10 20 80 80

Datasetl 20 30 80 80
1 5 70 60

5 10 70 80

10 20 70 60

Dataset2 20 30 70 70
1 5 70 80

5 10 70 60

10 20 70 60

Dataset3 20 30 70 80
Averages 73 74

Based on the overall results, the MLP network is better than the RBF network for the lung cancer data.
Based on other research, the MLP was better than Extreme Learning Machine [31]. Meanwhile, in
other research, MLP-LM is betf@ than other MLP used in the results [29]. Al-batah et al (2010) states
that among all neural network structures, the most commonly and widely used is the MLP structure.
The popularity of the MLP is due in part to their computational simplicity, finite parameterization,
stability and smaller structure size for a particular problem as compared to other structures. The MLP
is generally straightforward to use and provides good approximation of any input—output mapping
[30]. Thus, the results of our research are the same as the published paper.

4. Conclusion

This study is to prove the performances of the neural network with Radial Basis Function (RBF) and

Multilayered Perceptron (MLP) structures for the lung cancer data. Three datasets are used to test the

performance of the neural network structures. The MLP structure is better classification results than

RBF structure of neural networks.
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