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« We study the effect of nano-silica modified bitumen in unaged and aged conditions.
» NS-PMB6 improves the viscoelastic properties and resistance to the ageing.
« The ANN models show a good agreement between measured and predicted data.

ARTICLE INFO ABSTRACT

=

This study examines the effect of mixing va rying!rcentages of nano-silica (NS), i.e. 2, 4 and 6% [ by weight
of polymer-modified bitumen, PMB) with PMB, in unaged and ag ditions. The Fourier transform
infrared spectroscopy, x-ray diffraction, scanning electron microscopy and dynamic shear rheometer were
used to determine chemical, microstructure and rheological properties of the binders, respectively. An
artificial neural network (ANN) m , known as the multilayer perceptron neural networks model with
three different algorithms namely; Levenberg-Marquardt (LM), scaled conjugate gradient {SCG), and gra-
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g;’s::sm odified bitumen (PMB) dient descent with adaptive back propagation (GDA) were used to predict the rheological properties of
Nanosilica binders. The results indicate that adding NS to PMB may weaken the binders and delay their ageing.
Chemical The amorphous structures of NS-PMBs remain unchanged and no new crystalline phase was formed when
Microstructure varying percentages of NS was added to PMB. Extreme heat caused a marked increase in the complex mod-
Rheology ulus of NS-PMBG while low temperatures reduced its complex modulus. This resulted in enhanced resis-

Artificial neural network (AMN) tance to the rutting and fatigue parameters. Adding higher amounts of NS particles to PMB also improved
the viscoelastic properties and resistance to the ageing conditions of NS-PMB6. In terms of modeling, it
was found that the most suitable algorithms and neurons number in the hidden layer for the ANN-
Unaged model is LM algorithm and 11 neurons. For ANN-RTFOT and ANN-PAV models, the optimum algo-
rithms and neurons number in hidden layer is SGC algorithm with 11 neurons and LM with 9 neurons
respectively. The R-value (>0.95) for all models show a good agreement between measured and predicted
data. It was concluded that the ANNs could be used as an accurate, fast and practical method for research-
ers and engineers to predict the phase angle and complex modulus of NS-PMBs.

@ 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The past several years have seen an increase in the demand for
high-quality bitumen to meet the need for durable pavements with
low maintenance and rehabilitation expenses. In the search for
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superior quality bitumen, more and more investigations have been
focusing on bitumen modification. Amongst the methods investi-
gated for modifying bitumen, the most frequently used method is
polymer modification. The modification of bitumen with polymer,
widely known as polymer-modified bitumen (PMB), requires that
the polymer be incorporated into the bitumen via mechanical mix-
ing or chemical reaction [1]). For the past four decades, researchers
have been giving more focus on PMB, and, since the 1970 s, many
research articles have been published on this area of research [2].
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Among the polymers used in these studies are]i’%stamers (e.g. poly-
ethylene (PE), polypropylene (PP), ethylene-vinyl acetate (EEY;
ethylene-butyl acrylate (EBA)) and thermoplastic elastomers (e.g.
styrene-butadiene-styrene (SBS), styrene-isoprene-styrene (SIS),
and styrene- ethylene/butylene-styrene (SEBS)), all of which were
originally intended for modifying bitumen [3-7]. These polymers
have been shown to produce a certain degree of rovement in
the characteristics of bitumen, such as enhanced stiffness at high
temperature, better cracking resistance at low temperature, supe-
rior moisture resistance, and longer fatigue life [8-11].

Despite of these successes, researchers still have to find methods
to reduce production cost; reduce the sensitivity of some of the PMB
to high temperatures; improve ageing resistance and poor storage
stability; as well as enhance the binders’ elasticity [12]. Nanotech-
nology is being used more frequently to modify bitumen in the
attempt to eliminate the drawbacks of PMBs. e then, several
researchers have proven that nano-materials such as nano-clay,
nano-hydrated lime, and nano-carbonate very effective in enhanc-
ing the engineering properties of bituminous binders and asphalt
mixtures [13-15]). The advantage of using this nano-material is its
high performance and low cost of production [ 16]. Nano-silica com-
posites have been receang a lot of attention in the field of science.
Nano-silica has a large surface area, good adsorption, good dispersal
ability, high chemical purity, and excellent stability [ 17]. The advan-
tages of these nano-materials are by virtue of in their low manufac-
turing cost and superior performance [16,18]

On the other hand, the need to model and estimate the damage
accumulated over the service life of a new binder based on the
empirical rutting and cracking performance model is another issue
that must be addressed. Since an artificial neural network (ANN) is
successful used in several civil engineering problems such as tide
forecasting, earthquake-induced liquefaction, and wave-induced
seabed instability that are difficult to solve or interrupt through
conventional approaches of engineering mechanics. ANN models
can provide reasonable accuracy in dealing with civil engineering
problems and is a more effective tool for engineering applications.
Several types of research have been conducted in the last decade to
develop a prediction model by using the ANN method [19,20]. Cey-
lan et al. [19] described the development of a new asphalt mixture
dynamic modulus |E*| prediction model which use the ANN
method. In addition, Kok I. [20] conducted a study with the
objective of modeling the complex modulus of base and Styrene-
butadiene-styrene (SBS) modified bitumens by using ANNs.

Thus, this current study was divided into two s ns. The first
section is to examine the effect of mixing varying percentages of
nano-silica (NS),i.e. 2, 4 and 6% (by weight of polymer-modified bitu-
men, PMB) with PMB, in unaged and aged conditions. The physical
testings (i.e. penetration, ductility, softening point rage stability
test, Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction
(XRD), scanning electron microscopy (SEM) and dynamic shear

38

rheometer (DSR) were used to determine the physical, chemical,
microstructure and rheological properties of the binders, respec-
tively. In additi@ for the second section, anew and efficient approach
to predict the rheological properties of NS-PMBs such as complex
modulus and phase angle via the multilayer perceptron neural net-
works model is presented. In this vy, the NS content, temperature
and frequency for determining the complex modulus and phase angle
were evaluated using both experimental and modeling approach.

2. Experimental design
2.1. Materials and sample preparation

The material employed in the present research is PG-76
polymer-modified bitumen, which also serves as the control sam-
ple. Table 1 shows the physical and rheological characteristics of
the control sample. The tropical regions of the world have a consis-
tent climate and are able to provide the supply of performance
grade (PG) binder. Nano-silica (NS) particles in the form of white
powder with a maximum size of approximately 32 nm were used
in varying percentages to modify PMB in the laboratory. The PMB
was modified with 2, 4 and 6% NS by weight of binder

The NS and bitumen were blended at a shear rate of 3000 rev-
olutions per minute (rpm) for one hour at a constant high temper-
ature of 163 °C. The bitumen sample was prepared in laboratory by
modifying the NS, Three different NS concentrations, namely 2, 4
and 6% (by weight of PMB), were added to the PMB binders. The
NS materials were mixed in a high shear rate machine. Floating
bubbles could be observed on the surface of bituminous binder
once the NS has dispersed and liquefied in the PMB binder. The
physical and storage stability properties of the control and NS-
PMBs have shown in Table 2.

2.2. X-Ray diffraction

The X-RD is a very fundamental experimental technique and is
frequently used to identify the crystal structure of solids; this
include lattice constant and geometry, determination of unknown
materials, orientation of a crystal, preferred orientation of poly-
crystals, defects, stress, etc. In this research, the X-Ray Diffraction
(X-RD) was performed using a Brucker axs-D8 diffractometer to
determine the crystal and microstructure of the NS particles and
NS-PMB’s binders by using Cu k radiation (i=0.15406 nm;
40 kV, 40 mA). The scanned range is between 5° and 80° in the
20 with a scanning rate of 0.025 o/s.

2.3. Fourier transform Infrared spectroscopy

Infrared absorption spectroscopy is one of the most effective
methods for detecting and identifying organic compounds. It is

Table 1

Physical and rheological properties of PG-76.
Test Quality Specification Test Standard Unit Requirement Result
Softening Point ASTM D36 [21) °C Min. 70 °C 93
Penetration ASTM D5 [22] 0.1 mm Min. 45 46
Flash Point AASHTO T48 1 Min. 260 °C 343
Performance Specification @
Viscosity at 135°C ASTM D4402 [23] Pa.s Max. 3 Pas 245
Dynamic shear, G'fsin & Test temp. @ 10 rad/s, 76 “C AASHTO T315 kPa Min. 1.00 kPa 2,10
Rolling Thin Film Oven Test Residue (AASHTO T240)
Mass Loss AASHTO T240 % Max. 1.00% 0.04
Dynamic shear, G'[sin & Test temp. @ 10 rad/s, 76 °C AASHTO T315 kPa Min. 2.20 kPa 3.40
Pressure Ageing Vessel Residue (AASHTO R28)
PAV Ageing Test Temperature 100 =C
Dynamic shear, G [sin & Test temp. @ 10rad/s, 76 °C AASHTO T315 kPa Min. 5000 kPa 1200
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Table 2
Physical properties of PMB and MNS-PMBs.

Penetration @ 25 °C (d-mm)

Test/Sample Penetration Index (PI)

Ductility @ 25 “C {cm) Softening Point (°C) Storage Stability

Test Standard ASTM D5 [22] - ASTM D113 [24] ASTM D36]21] -
PMB 66.40 411 102.00 73.00 -
NS-PMB2 59.40 4,09 81.00 75.00 Stable
NS-PMB4 49.50 3.55 93.00 76.00 Stable
NS-PMB6 38.20 4,02 108.00 83.00 Unstable
able to identify the vibrational structure of the molecules as well as s

th lecular structure of the various functional groups. The Four-
ier Transform Infrared Spectroscopy (FTIR) was used to analyse the
functional characteristic of the bituminous binders and was per-
formed using the PerkinElmPectrum 400 FTIR |/ FTNIR. Samples
were analysed using the Attenuated Total Reflectance (ATR)
between the range of 4000 and 650 cm ™.

2.4. Morphology analysis

The morphology of NS-PMBs binders was investigated using the
Hitachi VP-SEM SU 3500. Scanning electron microscope (SEM) is
frequently used to examine the physical and chemical characteris-
tics of nano-materials. The electron beam was scanned directly on
the surface of the samples and this produces various signals which
were then analysed. Three different operations can be used with
the SEM, namely secondary tron imaging (SEI), backscattered
electron imaging (BSE), and energy dispersive x-ray (EDX). In this
research, the BSE and EDX were employed to determine surface
morphology as well as to analyse the characteristics of the
microstructure of the PMB and NS-PMBs binders. BSE is able to
produce visual information which distinguishes the different
intensity of the chemical phase. High-energy electrons are utilized
directly on the specimen to backscatter the electrons. The number
of electrons reflected is the atomic number of the sample, SEM can
also be used to identify the elements making up a sample by using
the X-ray spectrum of a specific specimen. This analysis can be
done in a spot mode which allows for the navigation and focus
on a specific area of the specimen.

2.5. Ageing procedure

PMB and NS-PMBs were aged under artificial conditions using a
rolling thin film oven test (RTFO here short term ageing was
carried out at 163 °C for 85 min. Long term ageing was done in a
pressure ageing vessel (PAV) where the binders were placed in
the oven under 2.1 MPa at 100 °C for 20 h. The RTFOT and PAV pro-
cedures were carried out as per ASTM D2872 [25] and ASTM D6521
|26], respectively.

gi. Dynamic shear rheometer

The dynamic shear rheometer (DSR) was used to determine the
rheological characteristics of the PMB and NS-PMB binders. The
samples were immersed in water to control its temperature in
the DSR. The fluid bath ensures that the sample temperature is uni-
form and constant throughout the test. The temperature control
unit is used to maintain the temperature to within 0.1 °C of the
temperature suggested by SHRP. The strain sweep test for the
unaged samples was performed at 46 °C to ensure that the rheolog-
ical tests are conducted within the linear viscoelastic (LVE) region.
The limit for LVE behaviour is the point beyond which the mea-
sured value of complex modulus is 95% of its zero-strain value.
The frequency sweeps inDSR tests were done at varying tem-
peratures. Therefore, the complex modulus and phase angle were
measured at different temperatures and frequencies for different
plate diameters and gap widths, as shown in Table 3.

DSR test conditions for sample geometry.

Parameter Testing Configuration 1 Testing Configuration 2
Temperature 15-45°C 35-85°C

Frequency 0.6283-62.83 rad(s 0.6283-62.83 radfs
Plate diameter 8 mm 25 mm

Gap width 2mm 1 mm

2.7. Artificial neural network modeling

This research used the MATLAB mathematical software version
7.11.0 (R20@H) as a tool for developing the ANN models and to
predict the complex modulus and phase angle. The results of the
experiment were used to develop the ANN prediction models.
The method relies on the training part of the sample via the feed
forward back propagation learning. The aim of this research is to
find the best el which can be used to produce a satisfactory
prediction for complex modulus and phase angle. The datasets
from experimental results were used as the desired outputs (tar-
gets). Concentration, te rature and frequency were used as
input parameters whilst complex modulus and phase angle were
used as output parameter. The three-layer back propagation neural
network models were developed using 1260 DSR data planned
using the central composite design as training data. The dataset
was divided into five subsets of training and testing sets, each time
omitting one set for testing and another four sets for training. The
dataset is used for training and is tested for the remaining sub-set
in each training process, called the “fold cross validation”.

The most popular training algorithm is the supervised back-
propagation [27,28]. This research used the back-propagation algo-
rithm to train the networks. The type of multilg¥®r perceptron
(MLP) artificial neural network used in this study consists of three
layers, namely the input layer, the hidden layer, and the output
layerffiach of these layers has several neurons. The number of neu-
ms in the input and output layers are equ the number of

ut and output variables. The activity of the rons in the hid-
den layer is d ined by the activities of the input units and the
weight on the connections between the input and the hidden units.
The performance of the output is determined by the activity of the
hidden layer and the weights between the hidden and output lay-
ers [29]. The log-sigmoid transfer function (log-sig) was used
between the hidden layers and the output layer in all developed

N models. The non-linear nature of this function enhances the
performance of the neural network. P

The training algorithms, including the Levenberg Marquardt
(LM), scaled conjugate gradient (SCG), and gradient descent with
adaptive back propagation (GDA), were investigated and used in

Table 4
Neural network topologies of samples employed for the optimisation process.
Algorithm Train-LM Train-SCG Train-GDA
Input layer 3 3 3
5 5 5
Hidden layer 7 7 7
9 9 9
11 1 1
Output layer 2 2 2
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p 1. Eurier Transform Infrared Spectroscopy (FTIR) for PMB and NS-PMBs
inders.

Table 5
Assignations of the Main Bands of the FTIR Spectra.
Wavenumber (cm™') Assignations
2919 v C—H of —=(CH;)—
2850 v C—H of —(CH,}—
1576 v (=0 conjugated
1542 v C=C
1456 § C=H of ={CHy)—
1376 & C—H of CHy
1059 v 5=0 sulfoxide
965 & C—H trans di-substituted —CH=CH—
807 4 C—H aromatic mono-substituted
721 & C—H aromatic mono-substituted
699 4 C—H aromatic mono-substituted

this study before optimising the ANN topology. A Log sigmoid
transfer function was used for both the hidden and output layers
of the ANN. During training, varying number of neurons (5, 7, 9,
and 11) were applied for the hidden layer of the three training
algorithms (LM, SCG, and GDA) tested, while the number of neu-
rons in the input layer \u kept constant at three as illustrated
in Table 4, The optimal number of neurons in the hidden layer
was selected based on the minimum mean square error (MSE)
and maximum efficiency during the testing stage [30].

The performances of the five cross validation prediction models
(5-FCV) were measured using a statistical criterion and a graphical

representation based on the results of the network versus experi-
mental data. The statistical criteria for the evaluation of the 5-
FCV models in both the training and testing stages are Mean
squared error (MSE) (Eq. (1)), Coefficient of efficient (COE) (Eq.
(2)) and regression (Eqs. (3)-(5)).

_1 : 2
MSE = = ;(a.b} (1)
COE =1 Zi=1(@=b) 2)
inyla=b)
Y=a+bX (3)
po NZXY - XN Y) )
NY X - (LX)
_XY-byX
==~ (3)

where N is the number of observation; X is the index, and Y is the
size of data.

mesults and discussion
3.1. FTIr

FTIR spectroscopy is a simple analytical technique and is com-
monly employed to investigate the chemical and structural
changes that occur in different sample rder to determine the
ageing of the modified bitumen [31]. In this research, FTIR was
used to evalufflthe microstructure of the modified bituminous
binders. Fig. 1 shows the FTIR spectra of the PMB and NS-PMBs bin-
ders. Fig. 1(a) shows the identical assignations of the ﬂioriry of
the bands, with the strong peaks at around 2850cm ' and
2919 cm ', which is a common C-H stretching vibration in alipha-
tic chains [32].

Fig. 1(b) shows a clear disparity in §acteristic bands, i.e. a
partially enlarged spectra between 650 cm ' and 2000 cm ', The
band at 699 ¢cm ™' is related to the bending of C—H aromatic
mono-substituted of the styrene blocks and the band at
965cm ! is related to the bending of C—H tr?s di-substituted
—CH=CH— of the butadiene block. The band at around
1059 cm ! is related to the stretching of =0 sulfoxide. The alipha-
tic branched band (bending C—H of CH3) and aliphatic index band
(bending C—H of —(CH.),—) are present at 1376cm ! and
1456 cm ', respectively. The 1542 cm ' and 1576 cm ' bands cor-
respond with the aromatic band (stretching C=C aromatic) and
carbonyl band (stretching C=0 conjugated), respectively [17,32-
34]). Table 5 shows the identical assignations.

Fig. 1(a) and (b) show the clear diffelace in the FTIR trends for
PMB and NS-PMB binders between 699 cm ' and 1576 cm . This
indicates the altered microstructure of NS-PMBs binders in com-
parison to the PMB binder. The peak area ratios of the bands were
used to estimate the change in chemical bonding, and computation
was done using Eqs. (6)-(11) [17,32-34]. The changes in the bands
ratio are presented in Table 6.

Table 6

Change in the Ratio of the Bands in NS-PMB's binders.
Sample CH=CH 5=0 C—H of CHy C—H of —(CHz)y— C=C =0

965¢m ! 1059 em ™! 1376 em ™! 1456 em ! 1542 ¢m ™! 1576 em ™!

PMB 0.066728 0.063519 0.034230 0.052049 0.015761 0.033418
N5-PMB2 0.040086 0.031235 0.044933 0.073471 0.022450 0.024160
NS-PMB4 0.030119 0.038328 0.041066 0.055659 0.017358 0.033820
NS-PMBG 0.053072 0.083131 0.048318 0.060314 0.050648 0.082426
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Fig. 2. X-RD patterns for NS particles.
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Fig. 3. X-RD patterns for PMB and MNS-PMBs binders.
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Fig. 4. SEM images of NS, PMB and NS-PMB. (a) SEM image of NS at 400 magnification with EDX analysis; (

EDS Spot 1

e
THE. 0 [ 1 P
Element Weight % Atomic %
OK 51.76 53.65
Sik 25.63 15.13

Selected Area 1

Weight % Atomic %
94,58 97.90
5.42 2.10

Selected Area 1
Weight % Atomic %
94.01 96.68
2.56 1.98
0.39 0.17
3.04 1.17

SEM image of PMB at 500« magnification with EDX analysis;

() SEM image of NS-PMB2 at 500= magnification with EDX analysis; (d) SEM image of NS-PMB4 at 500 magnification with EDX analysis: and (e) SEM image of NS-PMB6 at

500x magnification with EDX analysis.

Table 6 shows the change in the ratio of the bands in the NS-
PMBs binders, where the band for carbonyl (C=0) of the NS-
PMB4 and NS-PMB6 increased after the addition of NS while the

band for NS-PMB2 decreased. In addition, the aromatic indices
(C=C) for NS-PMB2, NS-PMB4 and NS-PMB6 increased in compar-
ison to that of the PMB. While the sulfoxide index (S=0) for NS-
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Fig. 9. Phase angle master curves for PMB after RTFOT and PAV.
PMB6 increased, the value for NS-PMB2 and NS-PMB4 decreased in

comparison to PMB. Hence, the sulfoxide index is not a good indi-
cator of ageing index; instead, the carbonyl index was chosen as
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Fig. 10. Phase angle master curves for NS-PMBG after RTFOT and PAV.

the ageing index [17]. Table 6 shows a general increase in the car-
bonyl index of NS-PMBs. This indicates that adding NS to PMB may
weaken and delay the ageing process of bituminous binders.

3.2. X-Rd

The X-RD pattern shows that the PMB has an amorphous struc-
ture whereas NS particles are non-crystalline. The results of X-RD
show that there is a reduction in intensity when 2, 4 and 6% NS
were added to PMB. This indicates that the NS particles are well
dispersed and uniformly distributed in the mixture. Figs. 2 and 3
show the typical peaks for the NS particles and the binders, respec-
tively. Fig. 3 shows that the amorphous structures of NS-PMBs bin-
ders remain unchanged and no new crystalline phase was formed
when varying amounts of NS were added to the PMB. Moreover,
the addition of 3, 5 and 7% alumina nanoparticles (Al;03) as a mod-
ifier for base bitumen produced similar results as when adding NS,
in that no new peak was observed (non-crystalline) [35].

3.3. Morphology analysis

Scanning Electron Microscopy (SEM) and Energy Dispersive X-
ray (EDX) analysis were done to determine the morphology of
NS-PMBs, where the fineness and distribution of NS particles in
PMB were examined. The images from SEM show that the
microstructure of NS-PMBs binders was altered and that the NS
particles were uniformly and regularly-dispersed in the phase of
the PMB. Adding 2 and 4% NS caused the NS particles to agglomer-
ate, and the addition of 6% NS resulted in a clear agglomeration in
the NS-PMBG6 binder. The findings of this research is similar with
those made by Yao et al. [17] with regard to the evaluation of
the morphology of nano-silica modified bitumen using SEM
images. Analysis of the EDX results show that the NS-PMBs are
made up of carbon (C k), sulphur (S k), silica (Si k) and oxygen (O
k). Carbon and sulphur are associated mainly with PMB, whereas
oxygen is related to NS. Moreover, the physical dispersion of NS
in PMB, as shown in Fig. 4, indicates the increase in the amount
of NS for NS-PMB2, NS-PMB4 and NS-PMB6.

3.4. Rheological properties of unaged binders
18
The master curve of%‘lp]ex modulus and phase angle in the
present research was produced using T,er= 25 °C, and a numerical
method was employed to compute the shifting factors. Fig. 5 shows
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the complex modulus for PMB and NS-PMBs master curves. A com-
parison S-PMB2 and NS-PMB4 show that the complex modulus
is lower at high temperature and/or low frequency, while tiFficom-
plex modulus of NS-PMB6 shows a significant increase at high
temperature and/or low frequency.

NS-PMB exhibits lower complex modulus at high frequency
and/or low temperature. The addition of higher amount of NS par-
ticles to PMB improved the viscoelastic properties of NS-PMBs, as
manifested by higher complex modulus at high temperatures
and/or low frequency and low complex modulus at low tempera-
ture and/or high frequency. This is due to the hardness of NS par-
ticles which was identified through the penetration and softening
point tests. Yao et al. [17] investigated the rheological properties
of PG 58-34 bituminous binder modified with acrylonitrile-
butadienestyrene (ABS) through the addition of NS particles. They
found that the addition of NS particles decreased the complex
modulus, a finding which is congruent with the results of this
researﬁ
Fig. 6 shows the phase angle master curves for the PMB and N5-
PMBs binders, which are similar with the curve for NS-PMBs, with
the exception of NS-MB6. The master curves for NS-PMB2 and NS-
PMB4 show a higher increase in phase angle compared to the
increase fo B; this shows that a small amount of NS in the
PMB matrix has a negative impact on the properties of bituminous
binders, while higher amounts of NS improve the viscoelastic prop-
erties of NS-PMB, especially for those of NS-PMBE. In general, the
curve is relatively smooth in comparison to the curve for NS-
PMB6, with the phase angle master curve showing wvarying

Table 7

decrease in the phase angle with considerable discontinuity and
presence of waves. The discontinuous waves in the master curves
are an indication of the different chemical structures produced
by the addition of varying percentages of NS. The only similarity
in all phase angle master curves of the NS-PMBs is at the end of
the hi equency. In general, NS-PMB6 shows the highest effi-
ciency in terms of complex modulus and phase angle at all temper-
atures and frequencies. The NS-PMB6 also shows high complex
modulus and low phase angle values, indicating a good rutting
(permanent deformation) at high temperatures.

3.5. Rheological properties of aged binders

The master curves for the complex modulus of PMB and NS-
PMB6 binders after RTFOT and PAV aging are shown in Figs. 7
and 8. The curves show that there is a difference in two regions
in terms of the effect of ageing on NS-modified PMB; the first
region is where the NS particles is dominant at low loading fre-
quency and/or high temperature, while the second region is where
the bituminous phase is dominant at high loading frequency and/
or low temperature. In the region dominated by bitumen, the
changes in the complex modulus of NS-PMB6 that are attributable
to ageing omparable that those observed in the unaged sam-
ples, a slight increase in complex modulus after ageing. A
slight decrease in complex modulus was observed in the region
dominated by NS particles, which indicate that NS weakened the
effect of ageing on PMB. It should be noted that NS could have
reacted chemically with the PMB binder during mixing and heat-

Statistical measure from the5-KCV training stage for fold 3 with various learning algorithms simulation between measured and examined unaged data.

K-FCV Learning Algorithms

Unaged Data: 5-FCV Training Stage with Fold (F=3)

OQutput 1: Phase angle

Output 2: Complex modulus

MSE R COE MSE R COE
LM [3-11-2] 0.017666 0.99442 0.98888 0.0080262 0.99728 0.99444
LM [3-9-2] 0.019313 0.99333 0.98671 0.005672 0.99862 0.99722
LM [3-7-2] 0.022000 0.99134 0.98275 0.0077681 0.99743 0.99479
LM [3-5-2] 0.022403 0.99102 0.98211 0.013012 0.99288 0.98539
5CG [3-11-2] 0.02753 0.98641 0.97299 0.021475 0.97991 0.96021
SCG [3-9-2] 0.029432 0.98444 0.96913 0.024534 0.97369 0.94807
SCG [3-7-2] 0.025554 0.9883 0.97673 0.025551 0.9715 0.94368
5CG [3-5-2] 0.030324 0.98348 0.96723 0.026112 0.97022 0.94118
GDA [3-11-2] 0.031229 0.98251 0.96524 0.02834 0.96505 0.93071
GDA [3-9-2] 0.039058 0.97248 0.94563 0.029112 0.96343 0.92688
GDA [3-7-2] 0.052475 0.94977 0.90186 0.03183 0.95583 0.91259
GDA [3-5-2] 0.038275 0.97359 0.94779 0.029683 0.96135 0.92399

The bold values are shows the best model for different learning algorithms during training and testing stage.

Table 8

Statistical measures from the 5-KCV testing stage for fold 3 with different learning algorithms simulation between measured and examined unaged data.

K-FCV Learning Algorithms

Unaged Data : 5-FCV Testing Stage with Fold (F=3)

Output 1: Phase angle

Output 2: Complex modulus

MSE R COE MSE R COE

LM [3-11-2]" 0.038406 0.97887 0.95576 0.015655 0.99004 0.97952
LM [3-9-2] 0.069023 092686 0.85712 004686 0.90861 0.81653
LM [3-7-2] 0.061357 0.94907 0.8871 0035063 0.95149 0.89728
LM [3-5-2] 0.051026 0.96206 092192 0.05817 0.85585 0.71728
SCC[3-11-2] 0.053409 0.95835 0.91445 005806 0.85366 0.71835
SCG [3-9-2] 0.047061 0.96953 0.93358 0.030823 0.96133 0.92062
SCG [3-7-2] 0.057144 095493 0.90207 0034796 095122 0.89884
SCG [3-5-2] 0.074601 0.92304 0.83309 0.049522 0.8962 0.79509
GDA [3-11-2] 0.058828 0.95423 0.89621 0.033397 0.95528 0.90681
GDA [3-9-2] 0.073261 092439 0.83904 0.042301 092621 0.8505

GDA [3-7-2] 0.080994 0.9057 0.80326 0031799 095716 0.91551
GDA [3-5-2] 0.065403 0.94524 087172 0.053559 0.87643 0.76033

The bold values are shows the best model for different learning algorithms during training and testing stage.
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Fig. 11. Performance of ANN-unaged model based on 5-FCV with fold 3 and topology for Train-LM [3 11 2], train-5CG [3 9 2] and train-GDA |3 11 2] for after testing for (a-c)
phase angle output, and (d-f) complex modulus output.

ing. Hence, NS-PMB6 could become more viscous and exhibit slow The master curves for the phﬁ angle were plotted utilising the
complex modulus at high temperatures subsequent to the ageing shift factors obtained from the complex modulus master curves.
process. The phase angle master curves for the aged PMB and NS-PMB6 bin-
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Fig. 12. Regression plot for the testing of ANN-unaged model based 5-FCV with fold 3 and topology for Train-LM [3 11 2|, train-5CG [3 9 2] and train-GDA [3 11 2] for (a-c)

phase angle, and (d-f) complex modulus.

ders are shown in Figs. 9 and 10, respectively. The phase angle
master curve for NS-PMB6 shows that there is an increase in phase
angle after the ageing process. These results are identical to those

obtained and illustrated in the complex modulus master curve. It
summary, the addition of NS particles is able to reduce the effects
of ageing on PMB.
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3.6. ANN-Unaged model

3.6.1. Training stage

The training process for the neural network is stopped only
when the MSE falls below 0.0001 and the neural network have
an architecture of [352],[37 2],[39 2]and [3 11 2] with three dif-
ferent algorithms, i.e. train-LM, train-SCG and train-GDA, exam-
ined in all trials, Table 7 shows the execution to optimise the
best ANN design for modelling two outputs.

As can be seen, the models were trained using different training
algorithm with differ, umber of nodes in the hidden layer. Fold
three (F3) uses three neurons in the input layer, eleven neurons in
the hidden layer, and two neurons in the output layer by using
train-LM as the training algorithm (shown in bold type) to produce
the best ANN-unaged model. This topology results in the values of
MSE, R and COE of 0.0017666, 0.99442, and 0.98888 respectively
for the & as the first output, and MSE, R and COE values of
0.0080262, 0.99728, and 0.99444 respectively for the complex
modulus as the second output.

3.6.2. Testing stage

During the testing stage, results are generated and analysed
using the best ANN-unaged models obtained from the training
stage. In order to test and validate the ANN-unaged model, the out-
put for statistical tests based on MSE, R and the COE were exam-
ined between the measured (experiment) and estimated (ANN)
outputs. As can be seen in Table 8, a good agreement was obtained
for all algorithms in the ANN-unaged model with F3. The results for

Table 9

several simulations show that the best testing performance was
obtained for the ANN-unaged model based on the statistical test
where COE = 0.95576, MSE = 0.038406, and R = 0.97887 for the first
output, §, and COE = 0.97952, MSE = 0.015655, and R = 0.99004 for
the second output, G', for the ANN-unaged model based on 5-FCV
F3 and topology train-LM [3 11 2].

Here a total of 1,260 samples of the entire training/testing, the
ANN-unaged model based 5-FCV F3 and learning algorithm train-
LM, train-SCG and train-GDA, were tested based on one hidden
layer with varying number neurons, i.e.11, 9 and 11. A curve of lab-
oratory measured and ANN estimated outputs from the testing
stage of the ANN decision system were plotted. The curve shows
the degree to which a decision system data points match the mea-
sured and estimated outputs in decreasing probability. Fig. 11(a-f)
shows the graphs of the phase angle and complex modulus exper-
imental data versus the ANN estimated data performed using the
5-FCV based on fold three F3 with three learning algorithm train-
LM, train-SCG and train-GDA, respectively. As shown in Fig. 11(a
and d), the ANN-unaged model based on 5-FCV with F3 and topol-
ogy train-LM [3 11 2] produced the best ANN-unaged model based
on the performance of 5-FCV which resulted in higher COE and R
and lower MSE compared to other folds.

The R plots for testing ANN-unaged models are shown in Fig. 12
(a-f). The plots show that the testing data points for F3 with train-
LM [3 11 2] topology falls on the best fit line. This best fit line
matched the dotted perfect line, which is hidden in this case due
to this matching. In other word, train-LM [3 11 2] topology
achieved a testing R value greater than 0.97 for phase angle and
0.99 for complex modulus.

Statistical measure from the5-FCV training stage of fold 2with various learning algorithms simulation between measured and examined RTFOT data.

KFCV Learning Algorithms

RTFOT Data: 5-KCV Training Stage with Fold (F = 2)

Qutput 1: Phase angle

Qutput 2: Complex modulus

RMSE R COE MSE R COE

LM [3-11-2] 0.016863 0.99162 0.98332 0.0080695 0.99668 0.99322
LM [3-9-2] 0.028885 097522 0.95105 0.018641 0.98207 0.96438
LM [3-7-2] 0.022028 0.98566 097153 0.010862 0.99397 0.98791
LM [3-5-2] 0.030744 0.97188 0.94454 0.022113 0.97466 0.94987
SCC [3-11-2]° 0.03164 0.97019 0.94126 0.021429 0.97621 0.95293
50G [3-9-2] 0.026436 0.97929 0.959 0.016728 0.98568 0.97132
SCG [3-7-2] 0.03523 0.9629 092718 0.019679 0.98007 0.9603

SCG [3-5-2] 0.035968 0.9613 0.9241 0.02516 0.96704 0.93511
GDA [3-11-2] 0.048742 0.92788 0.86061 0.035579 0.93346 0.87023
GDA [3-9-2] 0.04832 0.92912 0.36301 0.038958 0.91976 0.84442
GDA [3-7-2] 0.042388 0.94599 0.89459 0.039647 0.9168 0.83887
GDA [3-5-2] 0.040256 09514 0.90492 0.032076 0.94654 0.89453

The bold values are shows the best model for different leaming algorithms during training and testing stage.

Table 10

Statistical measure from the5-FCV testing stage of fold 2 with various learning algorithms simulation between measured and examined RTFOT data.

KFCV Learning Algorithms

RTFOT Data: 5-KCV Testing Stage with Fold (F=2)

Qutput 1: Phase angle

Qutput 2: Complex modulus

MSE R COE MSE R COE

LM [3-11-2] 0.052448 091992 0.83878 0.071192 0.81348 0.656
LM [3-9-2] 0.043649 0.94333 0.88834 0.096639 0.66491 0.36613
LM [3-7-2] 0.036407 09619 092232 0.078892 0.8132 0.57757
LM [3-5-2] 0.038547 0.95741 0.91292 0.072038 0.81763 0.64778
SCG [3-11-2] ° 0.034124 0.96534 0.93176 0.03504 0.95862 0.91667
5CG [3-9-2] 0.051037 0.92332 0.84735 0.068909 0.82643 0.67771
SCG [3-7-2] 0.045113 094374 0.88073 0.056186 0.89771 0.78574
SCG [3-5-2] 0.042682 0.94539 0.89324 0.051447 0.91287 0.82036
GDA [3-11-2] 0.053162 0.91576 0.83437 0.062319 0.8839 0.7364
GDA [3-9-2] 0.062054 0.88387 0.77433 0.068313 0.84482 0.68326
GDA [3-7-2] 0.081549 080183 0.61026 0.056815 0.89M7 0.78091
GDA [3-5-2] 0.052415 09165 0.83899 0.07365 0.80873 0.63184

The bold values are shows the best model for different leamning algorithms during training and testing stage.
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Fig. 13. Performance of ANN-RTFOT model based on 5-FCV with fold 2 and topology for Train-LM [3 5 2|, Train-5CG [3 11 2] and Train-GDA [3 11 2] after testing for (a-c)

phase angle output, and (d-f) complex modulus output.

3.7. ANN-RTFOT model

3.7.1. Training stage

For the RTFOT data training, various ANN topologies based on
varying numbers of hidden layer neurons are examined by utilising
the statistical weighting pre-processed inputs. The statistical mea-
sures involved are MSE, R and COE. Accuracy could be improved by
analysing the results of this training results; this is done through
different learning algorithms, i.e. train-LM, train-SCG and train-

GDA, and by varying the number of hidden neurons as indicated
by smaller MSE and values approaching 1 for R and COE. The anal-
ysis of statistical measures obtained in the ANN-RTFOT models
based on 5-FCV with fold two (F2) is given in Table 9; it shows that
the SCG algorithm yields excellent performance compared to the
LM and GDA algorithms. Amongst the SCG algorithms, the train-
SCG [3 11 2] structure algorithm produced the most optimal topol-
ogy. For the phase angle, which represent the first input, the RMSE,
R and COE topology values are 0.03164, 097019 and 0.94126
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respectively, while the values for the complex modulus as the sec-
ond output are 0.021429, 0.97621, and 0.95293 respectively.

3.7.2. Testing stage

In the RTFOT data testing stage, results were generated and
analysed using the best ANN-RTFOT models obtained from the
training stage. Analysis of the data points which gives the MSE, R
and COE values for the ANN-RTFOT model was examined for the
measured (experiment) and estimated (ANN) outputs. To assess
the performance of the phase angle and complex modulus predic-
tion, the entire dataset was checked in the testing stage. The pre-
diction of performance based on the 5-FCV to the model RTFOT
dataset have topologies of train-LM [3 5 2], train-SCG [3 11 2]
and train-GDA [3 11 2] at all trails. The results for several simula-
tions show that the best testing performance was obtained for the
ANN-RTFOT model based on the statistical test where
COE =0.93176, MSE = 0.034124, and R = 0.96534 for the first out-
put, phase angle, and COE=0.91667, MSE=0.03504, and
R=0.95862 for the second output, complex modulus, for the
ANN-RTFOT model based on 5-FCV F2 and topology train-SCG [3
11 2]. This result is shown in Table 10.

In view of the second instance of testing examination, the ANN-
RTFOT model based on 5-FCV with F2 and learning algorithm train-
LM, train-SCG and train-GDA, separately are approved based vari-
ous neurons of 5, 11 and 11 on single hidden layer. A laboratory
measured and ANN estimated outputs curve from the testing stage
of the ANN-RTFOT decision system was also examined. Fig. 13(a-f)
shows the best results obtained from experimental data versus the

Table 11

ANN estimated data from five trials which used three the different
algorithms (train-LM, train-SCG and train-GDA) for ANN-RTFOT
model based on 5-FCV with F2. The curve shows the degree to
which the decision system data points match the measured and
estimated output in order of decreasing probability. Fig. 13(b and
¢) shows the graphs for & and G* experimental data versus ANN
estimated data plotted using the 5-FCV based on F2 with the most
optimal topology, i.e. train-SCG [3 11 2].

The R plots for ANN-RTFOT testing are shown in Fig. 14(a—f). It
can be noted from the R plots that the testing which produced
higher R values were in F2 with train-SCG [3 11 2], which resulted
in a recorded 0.96534 for phase angle and 0.95862 for complex
modulus.

3.8. ANN-PAV model

3.8.1. Training stage

In this stage, the same protocol for ANN topologies training
investigations was adopted for varying number of hidden layer
neurons. The results for statistical measurement of MSE, R and
COE are presented in Table 11.

Results with smaller MSE and higher R and COE values
approaching 1 indicate that training accuracy is enhanced by dif-
ferent learning algorithms, i.e. train-LM, train-SCG, and train-
GDA, and by changing the number of hidden neurons. From the
statistical measures obtained in the ANN-PAV model based on 5-
FCV with fold 3 and train-LM algorithm yields results which are
compared to the SCG and GDA algorithms. Amongst the train-LM

Statistical measures from the 5-FCV training stage of fold 3with various learning algorithms simulation between measured and examined PAV data.

KFCV Leamning Algorithms

PAV Data: 5-FCV Training Stage with Fold (F = 3)

Qutput 1: Phase angle

OQutput 2: Complex modulus

MSE R COE MSE R COE

LM [3-11-2] 0.016209 099533 0.99069 0.0057423 0.99867 0.99734
LM [3-9-2] * 0.018694 0.99379 0.98761 0.0059808 0.99856 0.99711
LM [3-7-2] 0.018674 09938 0.98764 0.0088373 0.99691 0.99369
LM [3-5-2] 0.028679 0.98532 0.97084 0.016335 0.98953 0.97844
SCG [3-11-2] 0.035315 097772 0.95579 0.019105 098536 0.97051
5CG [3-9-2] 0.020456 0.99256 0.98517 0.011102 0.99519 0.99004
SCG [3-7-2] 0.019311 099337 0.98678 0.0087053 09970 0.99388
5CG [3-5-2] 0.020794 099231 0.98467 0.010185 0.99592 0.99165
GDA [3-11-2] 0.03254 098113 0.96246 0.031055 096125 0.92208
GDA [3-9-2] 0.030117 098382 0.96784 0.028683 0.96652 0.93353
GDA [3-7-2] 0.038396 0.97361 0.94774 0.03271 0.95671 0.91355
GDA |3-5-2] 0.032583 098103 0.96236 0.028515 096687 0.9343

The bold values are shows the best model for different learning algorithms during training and testing stage.

Table 12

Statistical measure from the 5-FCV testing stage of fold 3 with various learning algorithms simulation between measured and examined PAV data.

KFCV Leamning Algorithms

PAV Data: 5-KCV Testing Stage with Fold (F =3)

Output 1: Phase angle

Output 2: Complex modulus

MSE R COE MSE R COE

LM [3-11-2] 0.018643 0.99418 0.98799 0.026374 097744 0.94946
LM [3-9-2] * 0.020478 0.99298 0.98551 0.025344 0.97942 0.95333
LM [3-7-2] 0.031169 0.98332 0.96644 0.069343 0.81763 0.6506

LM [3-5-2] 0.031065 0.98358 0.96667 0.039196 0.94943 0.88837
SCC[3-11-2] 0.034766 0.97901 0.95825 0.044512 0.93108 0.85603
SCG [3-9-2] 0.021863 0.99182 0.98349 0.035557 0.95942 0.90813
SCG [3-7-2] 0.036434 0.97759 0.95415 0.040548 0.94372 0.88053
SCG [3-5-2] 0.028568 0.98642 0.97181 0.050819 0.90762 0.81234
GDA [3-11-2] 0.035378 0.9782 0.95677 0.04486 0.92887 0.85377
GDA [3-9-2] 0.032938 0.98167 0.96252 0.057018 0.88065 0.76377
GDA [3-7-2] 0.038822 0.97376 0.94794 0.039073 0.94738 0.88907
GDA [3-5-2] 0.036115 0.97749 0.95495 0.047353 0.92102 0.83707

The bold values are shows the best model for different learning algorithms during training and testing stage.
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Fig. 15. Performance of ANN-PAV model based on 5-FCV with fold 3 and topology for Train-LM [3 9 2], Train-5CG [3 8 2] and Train-GDA [3 7 2] for after testing for (a-c) phase

angle output, and (d-f) complex modulus output.

algorithm, the train-LM [3 9 2] topology algorithm produced the
most optimal topology. For the phase angle which represents the
first input, the values for MSE, R and COE topology are 0.018694,
0.99379 and 0.98761 respectively, while the values of MSE, R and
COE for the complex modulus as the second output are
0.0059808, 0.99856, and 0.99711 respectively.

3.8.2. Testing stage

In the PAV data testing stage, results were generated and anal-
ysed using the selected model in the training stage. The analysed
data points produced the MSE, R and COE for the ANN-PAV model
for predicting the accuracy of the testing data. To assess the perfor-
mance of the phase angle and the complex modulus prediction, the
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Fig. 16. Regression plot for the testing of ANN-PAV model based on 5-FCV with fold 3 and topology for Train-LM [3 9 2|, Train-SCG [3 8 2| and Train-GDA [3 7 2] for after

testing for (a-c) phase angle, and (d-f) complex modulus.

entire dataset was checked in the testing stage. The performance
prediction based on the 5-FCV to model the PAV dataset have
topologies train-LM [3 9 2], Train-SCG [392] and train-GDA

[3 7 2] at all trails. The results for several simulations show that
the best testing performance was obtained for the ANN-PAV model
based on the statistical test where COE = 0.98551, MSE = 0.020478,
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and R=0099298 for the first output, phase angle, and
COE =0.95333, MSE = 0.025344, and R =0.97942 for the second
output, complex modulus, for the ANN-PAV model based on 5-
FCV F3 and topology train-LM [39 2. This result is shown in
Table 12.

In view of the second instance of testing examination, the ANN-
PAV model based on 5-FCV with F3 and learning algorithm train-
LM, train-SCG and train-GDA, separately are approved based vari-
ous neurons of 9, 9 and 7 on single hidden layer. A laboratory mea-
sured and ANN estimated outputs curve from the testing stage of
the ANN-PAV decision system was also examined. Fig. 15(a-f)
shows the best results obtained from the experimental data versus
the ANN estimated data from the five trials using the three differ-
ent algorithms (train-LM, train-SCG and train-GDA) for the ANN-
PAV model based on 5-FCV with F3. The curve shows the degree
to which a decision system data points match the measured and
estimated outputs in order of decreasing probability. Fig. 15(a
and d) shows the graphs of the 5 and G* experimental data versus
the ANN estimated data performed by the 5-FCV based on F3 with
the best optimal topology of train-LM [3 9 2].

The R plots for the testing of ANN-PAV models shown in Fig. 16
(a-f) provide more evidence for matching by recording the R values
during testing. In other words, ANN-PAV in F3 with train-LM
[39 2] topology achieved a testing R value greater than 0.99 for
phase angle and 0.97 for complex modulus. The scattering in the
R plots for F3 with train-LM [3 9 2] of both outputs are less than
other topologies in F3. It can be seen that the testing data points
are located on the best fit line.

gunclusions

Based on the outcome of this study, the following conclusions
can be drawn:

&l
o The results of the FTIR show an increase in the carbonyl index of
the NS-PMB binder. This indicates that the addition of NS to
PMB could weaken and delay the ageing process of bituminous
binders. On the other hand, the results for the X-RD shows that
the amorphous structures of NS-PMBs remain unchanged and
no new crystalline phase was formed when varying percentages
of NS was added to PMB. Morphological analysis showed a
change in the microstructure of NS-PMBs binders and a good
dispersion of NS particles in PMB was observed.
Overall, high temperatures significantly increased the complex
modulus of NS-PMB6 while low temperatures reduced the bin-
der's complex modulus. This has resulted in improved resis-
tance to rutting and fatigue parameters. Likewise, adding
higher amounts of NS particles to PMB improve the visc%tic
properties of NS-PMB6 as the complex modulus increase at high
temperatures and/or low frequencies and decrease at low tem-
peratures and/or high frequencies. In summary, NS-PMBs show
good resistance to the ageing conditions.
The best algorithm to predict the phase angle and complex
modulus for unaged NS-PMBs sample is LM algorithm. The pro-
posed ANN models for phase angle and complex modulus have
shown good agreement to the experimental result with R value
is 0.978 and 0.990 respectively. The most suitable neuron num-
ber in the hidden layer for this model is 11 neurons. For unaged
sample, the MSE and COV value were determined as 0.038 and
0.016 respectively for phase angle and 0.016 and 0.980 respec-
tively for complex modulus.
For the ANN-RTFOT model to predict the phase angle and com-
plex modulus for short term aging NS-PMBs the best algorithm
is SCG algorithm and the optimum number of neuron in the hid-
den layer is 11. The R value for this model is 0.965 for phase

angle and 0.959 for complex modulus indicating the best agree-
ment to the experimental result. The MSE and COV value was
reported as 0.034 and 0.932 accordingly for phase angle and
0.035 and 0.917 respectively for complex modulus.

The prediction of phase angle and complex modulus for long
term aging NS-PMBs was conducted using ANN-PAV model.
This model indicated that the best algorithm is LM and the most
suitable number of neuron in the hidden layer is 9. The correla-
tion between prediction and the experimental result shown
high with R value is 0.993 and 0.979, both for prediction of
phase angle and complex modulus. The MSE and COV value
was determined as 0.020 and 0.986 for phase angle and 0.025
and 0.953 for complex modulus.
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