BAB II

TINJAUAN PUSTAKA & LANDASAN TEORI

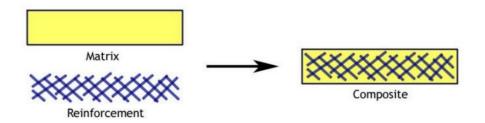
2.1 Tinjauan Pustaka

Pemanfaatan komposit serat alam untuk kebutuhan manusia cukup banyak, beberapa diantaranya sebagai aplikasi di bidang otomotif, olahraga, industri dan biomedis. Akan tetapi sifat mekanis dan fisis serat alam tidak sekuat serat sintetis. (Rana dkk, 2016) kekurangan yang dimiliki serat alam yaitu gaya adhesi yang tinggi sehingga fluida mudah terserap yang menyebabkan pembengkakan dari dimensi serat dan degradasi serat, yang mana hal tersebut dapat menurunkan kekuatan mekanik serat. Untuk mengurangi kekurangan tersebut dan menekan biaya dapat dilakukan kombinasi atau sering disebut komposit hibrida antara serat alam dan serat sintetis sehingga menghasilkan produk yang mempunyai kualitas lebih baik dengan harga yang terjangkau.

Sood, dkk (2015) melakukan penelitian pengaruh alkalisasi serat sisal terhadap kekuatan mekanis komposit sisal/HDPE. Matriks HDPE yang digunakan merupakan 50% HDPE murni, 50% HDPE daur ulang. Perlakuan alkalisasi serat ada dua macam yang pertama sisal dengan perlakuan NaOH + Maleic Anhydride (MA) dan sisal perlakuan NaOH + Benzoil Peroksida (BP) + MA. Fraksi volume yang digunakan komposit sisal/HDPE 92,5 : 7,5 % berat dan 70 : 30% berat. Metode fabrikasi menggunakan *injection molding*, pengujian mekanis yang dilakukan pengujian tarik dan pengujian *three point bending*. Hasil dari penelitian menunjukkan kekuatan tarik dan *bending* tertinggi sebesar 19,27 MPa dan 17,86 MPa pada variasi sisal *treatment* NaOH + MA/HDPE, dengan fraksi volume 92,5 :7,5 % berat. Sementara untuk kekuatan tarik dan *bending* terendah sebesar 11,99 MPa dan 13,93 MPa pada variasi sisal *treatment* NaOH + MA/HDPE dengan fraksi volume 70 : 30 % berat.

Penelitian komposit *filler* sintetis karbon juga telah dilaporkan, Savas dkk, (2016) melakukan penelitian penggunaan kopolimer polietilen sebagai *coupling agent* komposit serat karbon/HDPE. Penelitian tersebut menggunakan *coupling agent* polietilen maleat anhidrida (PE-g-MA), LOTADER 2210 (LOT-MA) dan

LOTADER 8840 (LOT-GMA) dengan rasio coupling agent 1,5, 3 dan 6% berat. Serat karbon dipotong dengan ukuran 6mm dan dilapisi dengan poliuretan 1,5-3% berat, metode fabrikasi menggunakan *injection molding*. Pengujian mekanis yaitu tarik ,*bending* dan *impact*, hasil penelitian menujukkan kekuatan tarik dan *bending* tertinggi terdapat pada variasi *carbon*/6% LOT-MA/HDPE sebesar 62,2 MPa dan 99,9 MPa sedangkan kuat *impact* tertingi pada variasi *carbon*/1,5% LOT-MA/HDPE sebesar 43 kJ/m². Kekuatan tarik, *bending* dan *impact* terendah pada variasi *carbon*/HDPE tanpa penambahan *coupling agent* dengan hasil 40,3 MPa, 62,4 MPa dan 11,6 kJ/m².

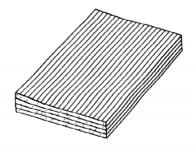

Pengujian fisis *water absorption* dilakukan untuk mengetahui ketahanan dan kemampuan komposit terhadap air ataupun kelembaban. Aji dkk, (2012) melakukan penelitian *water absorption* komposit hibrida kenaf/nanas/HDPE, dengan menggunakan 7 variasi KENAF, PALF, K3P7% (kenaf 30% palf 70%), K4P6%, K6P4%, K7P3% dan K5P5%. Fabrikasi menggunakan mesin press panas dengan fraksi volume HDPE/Serat 60:40 % berat. Metode pengujian *water absorption* ASTM D570, spesimen dimasukkan pada suhu 50°C selama 24 jam dan kemudian 105°C selama 2 jam untuk memastikan spesimen kering dan kemudian spesimen didinginkan kedalam desikator. Pengujian *water absorption* selama 14 hari, hasil penelitian menunjukkan kenaikan berat terendah terdapat pada variasi K3P7% sebesar 4 % dan pertambahan berat tertinggi pada variasi PALF sebesar 7%. Hasil tersebut terjadi karena variasi K3P7% mempunyai ikatan dan kompabilitas yang baik antara *filler* dan matriks.

Dari penelitian komposit yang sudah dilakukan sebagian besar hanya meneliti komposit dengan satu filler serat alam sisal atau serat sintetis karbon bermatriks HDPE. Sedangkan penelitian dengan hibridasi dua filler antara serat alam sisal dan serat sintetis karbon belum pernah dilakukan sebelumnya, oleh karena itu pada penelitian ini melakukan penelitian komposit hybrid serat sisal/*carbon*/HDPE dengan memvariasikan panjang serat karbon 6 mm, 10 mm dan 15 mm. pengujian fisis yang dilakukan yaitu *water absorption* sesuai ASTM D570 dan pengujian mekanis *3 point bending* sesuai ASTM D790.

2.2 Dasar Teori

2.2.1 Komposit

Komposit merupakan material yang dibuat dengan mengkombinasikan fasa matriks dengan campuran filamen yang berfungsi sebagai fasa penguat. Komposit dikembangkan oleh gagasan sederhana yang praktis yaitu dimana dua atau lebih material homogen yang mempunyai sifat berbeda digabungkan (Bishop dan Smallman, 2000). Perbedaan sifat matriks dan penguat (filler) mempunyai fungsi tersendiri, diantaranya matriks berfungsi untuk material utama penyusun, sedangkan filler berfungsi untuk merekatkan antar matriks dan meneruskan beban material ketika komposit memperoleh beban.



Gambar 2. 1 Susunan komposit

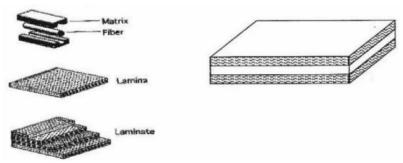
Menurut Schwartz (1984) dalam buku *composite material handbook* berdasarkan material penguatnya, komposit digolongkan menjadi lima jenis komposit berbeda yaitu :

1. Komposit serat (fibrous composite)

Komposit serat terdiri dari serat sebagai bahan penguat dan matriks sebagai bahan pengikat, pengisi volume, dan pelindung serat untuk mendistribusikan gaya atau beban antar serat. Pada dasarnya penguat yang berbentuk serat mempunyai kekuatan dan kekakuan yang lebih baik diandingkan dengan matriksnya. Komposisi dari ukuran serat akan mempengaruhi sifat komposit yang akan dihasilkan.

Gambar 2. 2 Komposit serat (Gibson, 1994)

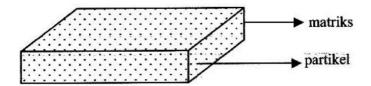
2. Komposit serpih (*flake composite*)


Komposit serpih adalah komposit yang metode fabrikasinya berupa penambahan material dengan bentuk serpihan kedalam matriksnya. Serpihan yang biasa digunakan dapat berupa serpihan mika, glass, maupun serpihan metal baja.

3. Komposit skeltal (filled composite)

Komposit skeltal merupakan komposit yang didalamnya mengandung partikel yang hanya digunakan untuk memperbesar volume material akan tetapi bukan untuk kepentingan sebagai bahan penguat. Pada komposit skeltal biasanya diberi tambahan material pengisi atau *filler* kedalam matriksnya dengan struktur bentuk tiga dimensi.

4. Komposit laminat (laminate composite)


Komposit laminat adalah jenis komposit yang tersusun dua atau lebih material penguat yang disatukan, dengan setiap lapisannya mempunyai sifat berbeda. Laminat dibuat bertujuan agar elemen struktur mampu menahan beban *multiactial*, sesuatu yang tidk dapat dicapai dengan lapisan tunggal.

Gambar 2. 3 Komposit lamina (Gibson, 1994)

5. Komposit partikel (particulate composite)

Komposit partikel adalah komposit yang menggunakan partikel serbuk sebagai penguat, dan terdistribusi secara merata dalam matriksnya. Komposit ini mempunyai bahan penguat yang dimensinya kurang lebih sama, sperti bulat, balok, serta bentuk lainnya yang memiliki sumbu hampir sama.

Gambar 2. 4 Komposit partikel (Gibson, 1994)

2.2.2 Matriks PE (Polyethylene)

Polyetylene merupakan salah satu jenis polimer yang terbentuk melalui proses polimerisasi monomer ethylene. Polyetylene disebut juga polietena atau politena yang merupakan etena homopolimer memiliki berat molekul 1500 – 100.000 dengan perbandingan C (85,7%) dan H (14,3%), dapat dibuat melalui proses polimerisasi etilena cair pada suhu dan tekanan tinggi atau rendah. Polimer ini memiliki sifat ulet, lentur, tahan terhadap bahan kimia, serapan uap air rendah, serta mudah diproses. Polyetylene dibagi 4 jenis berdasarkan densitasnya, yaitu LDPE, LLDPE, HDPE, dan MDPE (Marpaung, 2011).

Gambar 2.5 Reaksi Polimerisasi Polyethylene

1. LDPE

LDPE (Low Density Polyetylene) dibuat dengan cara melakukan polimerisasi dengan tekanan yang tinggi. Kekakuan dan kuat tarik yang

dimilliki LDPE lebih rendah dibandingkan dengan HDPE (*modulus young* 20.000 – 30.000 psi dan kuat tarik 1200 – 2000 psi), tetapi LDPE ini memiliki derajat elongasi yang tinggi (400 – 800%), maka jenis polimer ini mempunyai ketahanan untuk putus yang tinggi. Titik leleh LDPE berkisar pada suhu 105 °C – 115 °C. LDPE dalam dunia perdagangan lebih dikenal dengan nama sebutan *alathon*, *dylan* dan *fortiflex*.

2. LLDPE

LLDPE (*Linier Low Density Polyethylene*) merupakan kopolimer etilen dengan beberapa sedikit jumlah kandungan heksana, butan, atau oktan sehingga memiliki percabangan yang banyak pada rantai utama dengan jarak yang teratur. LLDPE lebih kuat dibandingkan dengan LDPE.

3. HDPE

HDPE (*High Density Polyethylene*) adalah jenis bahan yang memiliki berat jenis sekitar 0,935 – 0,965 gr/cm3 , dibuat dengan cara melakukan polimerisasi dengan menggunakan tekanan dan suhu yang rendah sekitar (50 – 70 °C). HDPE memiliki sifat yang lebih kaku dibandingkan dengan LDPE dan MDPE, dan mempunyai ketahanan terhadap suhu tinggi sehingga dapat digunakan untuk produk yang akan disterilkan.

4. MDPE

MDPE (*Medium Density Polyethylene*) memiliki sifat lebih kaku dari LDPE dan titik lelehnya lebih tinggi dari LDPE yang suhunya berkisar 115 $^{\circ}$ C – 125 $^{\circ}$ C

Polimer *polyethylene* adalah bahan polimer yang mempunyai tingkat kekerasan yang tinggi dan baik, dapat tahan terhadap bahan kimia kecuali oksida kuat dan halida, mampu larut dalam hidrokarbon aromatik dan larutan hidrokarbon yang terklorinasi diatas suhu 70 °C. Sifat - sifat yang dimiliki *polyethylene* sangat dipengaruhi oleh struktur rantai dan kerapatannya. LDPE yang mempunyai sifat lebih lentur, kedap air, ketahanan terhadap listrik yang baik, dan memiliki tembus cahaya yang kurang baik dibandingkan HDPE. Kristalinitas yang dimiliki HDPE

sangat rendah yang disebabkan oleh cabang dari rantai polimer, hal ini yang menyebabkan LDPE lebih elastis dibandingkan dengan HDPE. Sedangkan sifat HDPE yang mempunyai sifat kristalinitas yang lebih kaku dan lebih kaku karena termasuk polimer linier. Bentuk rantai dan kerapatan yang dimiliki ini sangat berbeda menyebabkan polimer ini mempunyai sifat yang berbeda. Menurut Cowd, (1991) ada dua cara yang dapat dilakukan dalam proses pembuatan rantai panjang dari polimer termoplastik *polyethylene* secara umum yaitu:

- a. Proses dengan kondisi pada tekanan tinggi yang dapat menghasilkan LDPE.
- b. Proses dengan kondisi pada tekanan rendah yang dapat menghasilkan HDPE.

Tabel 2.1 Sifat Fisik dan Mekanik *Polyethylene* dan *Polypropylene*

	Polypropylene	LDPE	HDPE
		(For Comparison)	(For Comparison
Density	0,90	0,91- 0,925	0,959-0,965
Crystallinity	30% to 50%	30% to 50%	80% to 91%
Molecular Weight	200K to 600K	10K to 30K	250K to 1.5M
Molecular Weight Dispersity MWD (Mw/Mn)	Range of MWD for processing	Range of MWD for processing	Range of MWD for processing
Tensile Strength, psi	4500 – 5500	600 - 2300	5000 – 6000
Tensile Modulus, psi	165K – 225K	25K – 41K	150K – 158 K
Tensile Elongation, %	100% - 600%	100% - 650%	10% - 1300%
Impact Strength ft-lb/in	0,4 – 1,2	No break	0,4 – 4,0
Hardness, Shore	R80 - 102	D44 – D50	D66 – D73

2.2.3 Serat Sisal

Serat alam merupakan alternatif *filler* komposit untuk berbagai jenis komposit polimer karena beberapa keunggulan sifatnya dibandingkan serat sintetis, antara lain yaitu harganya murah, densitas rendah, dan ramah terhadap lingkungan (Mallick, 2007). Akhir-akhir ini, pemanfaatan serat alam sebagai *filler* komposit telah diaplikasikan secara komersial di berbagai bidang industri seperti bidang otomotif dan juga olahraga. Di antara berbagai jenis serat alam, sisal merupakan salah satu tanaman yang paling banyak digunakan. Serat yang dihasilkan dari daun sisal tersebut sering digunakan sebagai tali, benang, karpet, dan kerajinan tangan, hal tersebut dikarenakan kekuatannya yang baik, tahan lama, dan afinitas terhadap zat warna baik (Kusumastuti, 2009).

Gambar 2. 6 Pohon sisal (sumber : http://www.palmaris.org)

Produksi sisal di seluruh dunia mencapai kurang lebih 4,5 juta ton setiap tahunnya. Tanzania dan Brazil merupakan negara sebagai penghasil sisal terbesar (Chand *et al* 1988). Tanaman sisal dapat menghasilkan 200- 250 daun, yang dimana masing-masing daun terdiri 1000-1200 bundel serat yang mengandung sejumlah 4% serat, 0,75% kutikula, 8% material kering, dan 87,25% air (Murherjee dan Satyanarayana, 1984).

Gambar 2. 7 Serat sisal (Kusumastuti, 2009)

Komposisi kimia yang terkandung dari serat sisal telah dikaji oleh beberapa peneliti, diantaranya Ansell (1991) dalam Kusumastuti (2009) menemukan bahwa serat sisal mengandung 78% sellulosa, 8% lignin, 10% hemi-celluloses, 2% wax dan 1% ash. Kemudian Rowell (1992) dalam Kusumastuti (2009) menyatakan bahwa sisal mengandung 43-56% sellulosa, 7-9% lignin, 21-24% pentosan dan 0,6-1,1% ash. Menurut Joseph, dkk (1996) dalam Kusumastuti (2009), sisal mengandung 85-88% sellulosa. Bervariasinya komposisi kimia dari serat sisal disebabkan oleh perbedaan tempat asal dan umur serat metode pengukuran. Kemudian Chand dan Hashmi (1993) menunjukkan bahwa sellulosa dan lignin yang terdapat pada sisal bervariasi dari 49,62-60,95 dan 3,75-4,40%, tergantung pada usia tanaman.

Moisture Kekutan Densitas Modulus Maximum Diameter content Tarik (kg/m^3) (GPa) Strain (%) (μm) (%) (MPa) 604 1450 11 9.4-15.8 50-200 1450 530-640 9.4-22 3-7 50-300 5 347 14 1030 500-600 16-21 3.6-5.1 400-700 9-20 1410 5-14 100-300 1400 450-700 7-13 4-9 530-630 17-22 3.64-5.12 100-300 450-700 7-13 4-9 1450

Tabel 2.2 Sifat serat sisal (Joseph dkk, 1996)

2.2.4 Serat Karbon

Serat karbon merupakan serat sintetis terkuat saat ini yang sering digunakan sebagai material konstruksi. Polimer yang diperkuat dengan serat karbon banyak digunakan untuk aplikasi alat olahraga, mobil balap, pesawat terbang, maupun komponen luar angkasa. Laminasi serat karbon kontinu (grafit) juga telah dipakai secara luas (Severini, 2002). Tak jarang serat karbon dilakukan kombinasi dengan serat jenis lain untuk membentuk komposit hibrida (seperti serat karbon dan sisal, serat karbon dan kevlar). Serat karbon yang berdiameter 5-10 µm dapat diperoleh dalam bentuk tali dengan 1000, 3000, 6000, atau 12000 filamen dan sebagai *pre-preg* dengan resin (Bishop dan Smallman, 2000).

Dengan berdasarkan degradasi terkendali atau pirolisis serat, proses pembuatan serat serat karbon dilakukan dalam beberapa tahap. Peregangan panas merupakan inti dari pemrosesan, dengan demikian kecenderungan penyusutan serat dapat dicegah dan dan dihasilkan orientasi molekular dengan tingkat tinggi. Dengan peregangan panas terjadi peningkatan temperatur hal tersebut memicu grafitasi dan memperbaiki modulus elastisitas tetapi enurunkan regangan perpatahan (Bishop dan Smallman, 2000). Akhrinya dilakukan perlakuan permukaan untuk lebih

meningkatkan kemampuan pembentukan ikatan dengan matriks dan ukuran untuk memudahkan penggunaan (Zhang dkk, 2004).

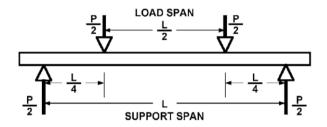
Setiap serat karbon yang dihasilkan sangat murni, dan pada dasarnya terdiri dari beberapa bentuk anyaman pita grafit turboplastik dan sedikit karbon amorf. Orientasi pita mendekati sumbu serat dan modulus aksial meningkat jika struktur mendekati bentuk dan struktur grafit sempurna. Struktur serat bersifat sangat anisotropik, modulus elastisitas sepanjang serat dan tegak lurus serat adalah 200-800 GN.m⁻² dan 10-20 GN.m⁻² (Bishop dan Smallman, 2000).

2.2.5 Alkalisasi

Perbedaan sifat pada serat alam (hydrophilic) dan matriks (hydrophobic) menyebabkan ikatan antar serat dan matriks menjadi lemah dan dapat menurunkan sifat mekanis komposit, sehingga perlu dilakukan proses alkalisasi (Akil dkk, 2011). Alkalisasi pada serat alam dilakukan dengan tujuan untuk melarutkan kotoran alam dan kandungan lignin yang terdapat pada lapisan luar serat. Larutan yang sering digunakan dalam proses alkalisasi yaitu NaOH (Natrium Hidroksida), KOH (Kalium Hidroksida) dan LiOH (Lithium Hidroksida). Serat yang telah diberi perlakuan alkali akan memiliki tingkat penyerapan yang tinggi jika proses alkalisasi terlalu lama dan konsentrasi yang tinggi, dikarenakan lignin yang masih menempel pada selulosa telah larut. Lignin yang ada memiliki sifat hidrofobik yang kurang bersifat kompatibel dengan matriks, sehingga dengan proses alkalisasi yang tepat dapat memperbaiki kompatibilitas serat dengan matriknya (John & Anandjiwala, 2008).

Perlakuan alkali dengan menggunakan larutan kimia tidak hanya dilakuakn pada serat alam saja, melainkan juga dilakukan pada serat sintetis. Seperti halnya pada serat karbon, untuk mendapatkan sifat gabungan yang baik dilakukan perlakuan permukaan untuk lebih meningkatkan kemampuan pembentukan ikatan dengan matriks dan ukuran untuk memudahkan penggunaan (Zhang dkk, 2004). Perlakuan permukaan pada serat karbon dapat menggunakan nitrogen cair (N₂) yang direndam dengan lama waktu yang diperlukan. Proses perlakuan serat karbon dengan nitrogen cair dalam waktu yang optimal mampu menghilangkan sifat amorf (amorphous)

sehingga meningkatkan ikatan antar serat dan ikatan dengan matriks. Sifat amorf pada sisi serat karbon adalah ikatan pada struktur molekulnya, dimana amorf ikatan antar molekulnya tidak teratur sedangkan semi-kristal adalah kombinasi antara rangkaian yang teratur. Pada bagian amorf mempunyai daya serap yang lebih besar dan kekuatan yang rendah jika dibandingkan dengan sifat kristalin serat. Pada bagian kristalin letak dan jarak antara molekul-molekul tersusun sangat teratur dan sejajar, sedangkan bagian amorf letak dan jarak anara molekul tidak teratur. Pada jarak yang besar inilah yang dapat berpengaruh terhadap ikatan antar serat dan matriks (Zhang dkk, 2004).


2.2.6 Pengujian bending

Uji *bending* merupakan salah satu bentuk pengujian untuk mengetahui sifat mekanis tegangan *bending*, regangan *bending*, dan modulus elastisitas *bending* suatu material. Proes pengujian dilakukan dengan cara meletakkan spesimen uji pada span dan dibawah penekan alat uji, kemudian spesimen akan mendapatkan tekanan *bending* hingga terjadi patahan.

Standar untuk pengujian *bending* dibedakan berdasarkan jenis material, seperti material komposit polimer yang khusus menggunakan standar ASTM D790. Ada dua macam bentuk penekanan *bending* yang dilakukan, yaitu dengan tiga titik *bending* (ASTM D790) dan empat titik penekanan (ASTM D6272).

Gambar 2. 8 Tiga titik *bending* (ASTM D790)

Gambar 2.9 Empat titik bending (ASTM D6272)

Untuk menentukan tegangan *bending* yang berdasarkan ASTM D790 dilakukan dengan menggunakan persamaan 2.1 sebagai berikut :

$$\sigma_f = \frac{3 P L}{2 h d^2}$$
 [2.1]

Keterangan:

 $\sigma_f = \text{tegangan } bending \text{ (MPa)}$

P = beban(N)

L = support span (mm)

b = lebar (mm)

d = tebal (mm)

Akan tetapi jika rasio perbandingan *support span* dan tebal spesimen lebih dari 16 maka menggunakan persamaan 2.2 sebagai berikut :

$$\sigma_f = \left(\frac{3PL}{2hd^2}\right) \left[1 + 6\left(\frac{D}{L}\right)^2 - 4\left(\frac{d}{L}\right)\left(\frac{D}{L}\right)\right] \qquad \dots \dots [2.2]$$

Keterangan:

Sedangkan untuk menentukan modulus elastisitas *bending* digunakan persamaan 2.3 sebagai berikut :

$$E_B = \frac{L^3 m}{4 b d^3}$$
 [2.3]

Keterangan:

$$E_B$$
 = modulus elastisitas (MPa)

$$m = slope (N/mm)$$

Kemudian regangan *bending* maksimal terjadi dimana perubahan nilai perpanjang elemen permukaan luar spesimen uji di bagian tengah. Untuk menentukan besarnya nilai regangan *bending* dapat dilakukan dengan menggunakan persamaan 2.4 berikut :

$$\epsilon_f = \frac{6Dd}{L^2} \qquad [2.4]$$

Keterangan:

$$\epsilon_f$$
 = regangan bending (mm/mm)

2.2.7 Pengujian daya serap air

Pada saat fabrikasi spesimen, kemungkinan terjadinya udara yang terjebak dalam lapisan atau terjadi karena dekomposisi mineral yang membentuk akibat perubahan cuaca, maka terbentuklah lubang atau rongga kecil didalam sempel komposit (pori). Pori dalam spesimen bervariasi dan menyebar diseluruh spesimen yang sudah di potong sesuai ukuran. Pori-pori mungkin menjadi tampungan air bebas didalam spesimen.

Presentase berat air yang mampu diserap spesimen dan serat didalam air disebut daya serap air, sedangkan banyaknya air yang terkandung dalam spesimen dan serat disebut kadar air. Pengujian daya serap air dilakukan terhadap semua variasi spesimen yang ada, data didapatkan dari hasil penimbangan berat spesimen kering dan basah. Lama perendaman dalam air dilakan secara bertahap 12 jam,24 jam, 36 jam dan seterusnya sampai nilai konstan. Massa awal sebelum direndam diukur dan juga massa sesudah perendaman.

Pengujian daya serap air mengacu pada ASTM D570 tentang prosedur pengujian, dimana bertujuan untuk menentukan besarnya persentase air yang masuk atau meresap kedalam komposit.

Berikut adalah persamaan 2.5 untuk menghitung pertambahan berat dalam uji daya serap air.

$$WA = \frac{B2 - B1}{B1} x \ 100 \dots [2.5]$$

Keterangan:

WA = daya serap air (%)

B1 = berat sebelum perendaman (gram)

B2 = berat setelah perendaman (gram)

Kemudian berikut persamaan 2.6 untuk menghitung thickness swelling.

Ts =
$$\frac{T2-T1}{T1}x$$
 100[2.6]

Keterangan:

Ts = thickness swelling (%)

T1 = tebal sebelum perendaman (mm)

T2 = tebal setelah perendaman (mm)

2.2.8 Instrumen analitik

1. Mikroskop optik

Proses karakterisasi serat dan komposit menggunakan alat bantu tambahan dikarenakan objek yang diamati berukuran mikro (µm) yang tidak bias dilihat dengan mata telanjang. Mikroskop merupakan salah satu alat bantu yang biasa digunakan untuk mengamati objek berukuran sangat kecil dengan cara memperbesar bayangan objek hingga berkali – kali lipat, bayangan objek yang diamati dapat diperbesar 40 kali, 100 kali, 400 kali, bahkan 1000 kali. Perbesaran yang mampu dijangkau semakin meningkat seiring dengan perkembangan teknologi. Pengujian dilakukan di Laboratotium Elektrospinning ruang CNC Teknik Mesin UMY.

Gambar 2. 10 Mikroskop optik digital usb