BAB III

METODE PENELITIAN

3.1. Alat Penelitian

Penelitian simulasi ini memerlukan beberapa alat yang digunakan yaitu hardware dan software.

 Software yang digunakan adalah ANSYS Fluent 18.0 untuk simulasi CFD. Logo ANSYS 18.0 ditunjukan pada Gambar 3.1.

Gambar 3.1. Logo ANSYS 18.0

 Hardware yang digunakan untuk menjalankan software ANSYS Fluent 18.0 memiliki spesifikasi yang ditunjukan pada Tabel 3.1.

Tabel 3.1. Spesifikasi	Perangkat	Komputasi
------------------------	-----------	-----------

No.	Jenis Hardware	Perangkat Komputasi
1	Processor	Intel Core i5-7400T 2.4 GHz
2	Motherboard	Lenovo
3	RAM	4GB DDR4
4.	Graphic Card	Intel HD Graphics
5.	Storage	1 TB HDD SATA 5400 rpm

3.2. Skema Penelitian Eksperimen

Skema penelitian eksperimen ditunjukan pada Gambar 3.2. Pada proses *charging valve* yang dibuka yaitu nomor 6 dan 12 dan yang ditutup nomor 1, 13, dan 7. Sedangkan pada proses *discharging* secara bertahap *valve* yang dibuka yaitu nomor 1, 13 dan 7 dan yang ditutup nomor 6 dan 12.

Gambar 3.2. Skema Penelitian Eksperimen

Keterangan nomor :

- (1) Keran Air
- (2) Tangki TES
- (3) Lubang pipa masuknya termokopel
- (4) Pipa tembaga berisi campuran PCM
- (5) Lubang pipa masuknya termokopel
- (6) Valve keluarnya air dari tangki ke pompa
- (7) Valve keluarnya air dari tangki ke bak
- (8) Bak penampung air
- (9) Pompa
- (10) Rotameter air 1 LPM untuk charging
- (11) Heater
- (12) Valve keluarnya air dari heater ke tangki
- (13) Valve keluarnya air dari keran air ke tangki
- (14) Rotameter air 3 LPM untuk discharging secara bertahap

3.3. Prosedur Penelitian

3.3.1. Variasi Penelitian

Variasi yang digunakan pada penelitian ini yaitu, sebagai berikut :

- 1. Pada proses *charging* menggunakan variasi fluks kalor dengan daya *heater* 900 W dan 1100 W.
- 2. Pada proses *discharging* secara bertahap dengan jeda waktu lima menit menggunakan variasi debit air 1,5 LPM dan 2,5 LPM.

3.3.2. Diagram Alir Penelitian

Pada penelitian ini menggunakan kerangka besar diagram alir sebagai berikut ini yang ditunjukkan pada Gambar 3.2 .

Gambar 3.3. Diagram Alir Penelitian

Gambar 3.3. Diagram Alir Penelitian (Lanjutan)

Gambar 3.3 Diagram Alir Penelitian (Lanjutan)

3.3.3. Langkah Penelitian

Penelitian ini dimulai dengan mencari referensi teori dan jurnal yang relevan untuk kasus penelitian ini. Selanjutnya mempersiapkan alat dan bahan simulasi. Seperti meng-*install ANSYS Fluent* 18.0 pada perangkat komputasi dan mempersiapkan data-data yang akan diinput pada *ANSYS Fluent* 18.0. Pada proses simulasi terbagi menjadi tiga proses yaitu *pre-processing*, *processing*, dan *post-processing*.

3.3.3.1. Pre-Processing

Pre-processing merupakan tahap awal yang dilakukan pada proses simulasi CFD. Berikut ini adalah langkah-langkah yang dibuat dalam tahap *preprocessing* :

1. Pembuatan Geometri

Bentuk geometri pada penelitian ini berbentuk silinder yand di dalamnya terdapat 32 pipa tembaga yang berisi PCM. Pembuatan geometri dilakukan pada software bawaan *ANSYS* yaitu *Design Modeler*. Pada Gambar 3.3 menunjukkan bentuk geometri dan dimensinya dan pada Gambar 3.4 menunjukkan posisi dari 25 termokopel.

2. Pembuatan Mesh

Mesh berfungsi untuk membagi domain menjadi volume-volume kecil yang dianalisa oleh komputer. Pembuatan mesh dapat dilakukan dengan menggunakan software bawaan ANSYS ataupun software lainnya. Pada penelitian ini pembuatan mesh menggunakan software bawaan ANSYS 18.0. Hasil pembuatan mesh bisa dilihat pada Gambar 3.6.

Gambar 3.6. Hasil Pembuatan Mesh

3. Kualitas Mesh

Kualitas *mesh* merupakan suatu hal yang penting karena mempengaruhi hasil dari perhitungan simulasi. Oleh karena itu dibutuhkan pemeriksaan *mesh* untuk memastikan bahwa *mesh*-nya sudah baik atau tidak. Untuk melihat rentang kualitas *mesh* dapat dilihat pada Gambar 3.7. Kualitas *mesh* yang sudah dibuat dapat ditunjukkan pada Tabel 3.2

	in metrics spec	aun			
Excellent	Very good	Good	Acceptable	Bad	Unacceptabl
0-0.25	0.25-0.50	0.50-0.80	0.80-0.94	0.95-0.97	0.98-1.00
Orthogonal Qu	ality mesh m	etrics spectrun	n		
Orthogonal Qu	ality mesh m	etrics spectrun	n		
Orthogonal Qu Unacceptable	ality mesh m Bad	etrics spectrun Acceptable	n Good	Very good	Excellent
Unacceptable 0-0.001	Bad 0.001-0.14	Acceptable 0.15-0.20	n Good 0.20-0.69	Very good 0.70-0.95	Excellent 0.95-1.00

. Gambar 3.7. Rentang Kualitas Mesh

Tabel 3.2. Kualitas Mesh pada Simulasi Ini

Kategori	Nilai
Skewness	Average :0,22065
Orthogonal	Average : 0,87725
Tipe	Tetra dan Heksa
Jumlah Elements	703061
Jumlah Nodes	262730

3.3.3.2. Processing

Pada tahap *processing* ini dilakukan *set-up ANSYS Fluent* 18.0 sesuasi skenario eksperimen yang dilakukan. Secara umum konfigurasi *Fluent* meliputi :

1. Penentuan Models

Pada *ANSYS Fluent* 18.0 dapat melakukan simulasi model pembekuan dan pelelehan dengan cara mengaktifkan *solidification & melting*. Apabila solidification & melting sudah aktif, maka langkah selanjutnya menentukan nilai konstanta porositas seperti pada Gambar 3.9. Konstanta porositas pada *set-up default* besarnya adalah 10⁵. Pengaruh mengenai konstanta porositas pada hasil simulasi yaitu dapat meningkatkan gradien pelelehan. Selain itu dikarenakan aliran fluida pada kasus ini diasumsikan turbulen, maka pada pengaturan model *viscous* dipilih model *k-epsilon*. Pada Gambar 3.8 ditunjukkan panel tampilan *models*.

Gambar 3.8. Panel Tampilan Models

Model	Parameters	
Solidification/Melting	Mushy Zone Parameter	constant 🝷 Edit
Back Diffusion		100000
	Include Pull Velocitie	95

Gambar 3.9. Memasukkan Konstanta Porositas

2. Parameter Material

Penelitian ini menggunakan material berupa tembaga sebagai pipa, air sebagai HTF, dan campuran *paraffin wax* dengan serbuk tembaga fraksi massa 10% sebagai PCM. Pada material PCM perlu didefinisikan agar hasil perghitungan simulasi menjadi lebih akurat. Tampilan panel properti material di *Fluent* dapat dilihat pada Gambar 3.10. Jika terdapat material yang menggunakan UDF, maka fungsi UDF perlu diinterpretasikan terlebih dahulu. Di dalam penelitian ini fungsi densitas didefinisikan menggunakan UDF dengan persamaan 2.12. Pembuatan UDF sendiri menggunakan *software ATOM* dengan bahasa pemprograman C.

Gambar 3.11. Panel Input Parameter Material

Gambar 3.11 memperlihatkan tampilan panel untuk memasukan nilai parameter material. Untuk memasukkan parameter PCM perlu merujuk pada properti ditentukan. Pada Tabel 3.3 menjelaskan klasifikasi jenis zona pada *ANSYS Fluent* 18.0

Tabel 3.3. Klasifikasi jenis zona

Material	Jenis zona
Copper	Solid
Water-liquid	Fluid
PCM	Fluid

Pententuan nilai sifat-sifat fisik dan termal dari campuran PCM dan serbuk tembaga didapatkan dari hasil pengujian dan perhitungan yang telah dilakukan. Nilai properti yang didapatkan dari pengujian adalah sebagai berikut : a. Densitas fase padat dan cair

Pengujian yang digunakan untuk mendapatkan nilai densitas fase padat pada campuran PCM dengan serbuk tembaga dilakukan dengan cara membuat spesimen yang volumenya sudah ditetapkan. Sedangkan pada fase cair dibutuhkan gelas ukur untuk mengetahui volumenya. Langkah selanjutnya, spesimen tersebut ditimbang untuk mengetahui nilai massanya. Setelah itu dilakukan perhitungan dengan persaaman 3.1.

dengan :

 ρ = Densitas (kg/m³)

m = Massa benda (kg)

 $V = Volume benda (m^3)$

Perhitungan densitas campuran PCM fase padat :

Diketahui :

m = 0,0031 kg $V = 3,319 \text{ x } 10^{-6} \text{ m}^3$

Maka, persamaan 3.1. dapat digunakan untuk menghitung densitas campuran PCM fase padat yakni :

$$\rho = \frac{0,0031 \, kg}{3,319 \, x \, 10^{-6} m^3}$$
$$= 934 \, kg/m^3$$

Perhitungan densitas campuran PCM fase cair :

Diketahui :

m = 0.03 kg $V = 3.643 \text{ x} 10^{-5} \text{ m}^3$

Maka, persamaan 3.1. dapat digunakan untuk menghitung densitas campuran PCM fase cair yakni :

$$\rho = \frac{0.03 \ kg}{3.643 \ x \ 10^{-5} m^3}$$
$$= 823.5 \ kg/m^3$$

b. Viskositas

Pengujian viskositas dilakukan dengan cara, menjatuhkan bola ke dalam gelas ukur yang berisi campuran PCM dengan serbuk tembaga dalam fase cair. Sebelumnya, bola diberi tali sepanjang tinggi gelas ukur dan diujung tali diberikan batang yang berfungsi sebagai penahan. Saat menjatuhkan bola, catatlah waktu dengan cara merekamnya lewat *handphone*. Kemudian dilakukan perhitungan dengan persamaan 3.2.

> $\mu = \frac{2(\rho_s - \rho_l)g \cdot r}{9v} \dots (3.2)$ $\mu = \text{Viskositas (Pa.s)}$ $\rho_s = \text{Densitas bola (g/cm^3)}$ $\rho_l = \text{Densitas campuran PCM (g/m^3)}$ $g = \text{Percepatan gravitasi (m/s^2)}$ r = Jari-jari bola (m) v = Kecepatan bola (m/s)Diketahui : $\rho_s = 7,46 \text{ g/cm}^3 \qquad r = 0,004 \text{ m}$ $\rho_l = 0,8235 \text{ g/cm}^3 \qquad v = 1,15 \text{ m/s}$

Persamaan 3.2 dapat digunakan untuk menghitung nilai viskositas campuran *paraffin wax* dengan serbuk tembaga fraksi massa 10% yakni :

 $q = 9.81 \text{ m/s}^2$

$$\mu = \frac{2(7,46 \ g/cm^3 - 0,8235 \ g/cm^3)9,81 \ m/s^2 \cdot 0,004 \ m}{9 \cdot 1,15 \ m/s}$$

= 0,1000653 Pa.S

c. Kalor lebur

Nilai kalor lebur didapatkan dari pengujian *Differential Scanning Calorimetry*. Hasil pengujian DSC dapat dilihat pada lampiran.

d. Titik beku dan Titik leleh

Nilai titik beku didapatkan dari nilai *onset* pada pengujian DSC. Sedangkan pada titik leleh diperoleh dari nilai *peak* pada pengujian DSC.

Sementara untuk mengetahui nilai konduktivitas termal dan C_p dilakukan perhitungan dengan menggunakan persamaan 3.3. dan 3.4.

$$k = \% P w \cdot k_{Pw} + \% C u \cdot k_{Cu} \dots (3.3)$$

$$C_p = \% P w \cdot C_{p_{pw}} + \% C u \cdot C_{p_{Cu}} \dots (3.4)$$
dengan :

- k = Konduktivitas termal (W/m.K)
- k_{Pw} = Konduktivitas termal *paraffin wax* (W/m.K)
- k_{Cu} = Konduktivitas termal tembaga (W/m.K)
- %Pw = Fraksi massa *paraffin wax*
- %Cu = Fraksi massa serbuk tembaga
- C_p = Kalor jenis (J/kg.K)
- $C_{p_{nw}} = \text{Kalor jenis } paraffin wax (J/kg.K)$

 $C_{p_{Cu}}$ = Kalor jenis tembaga (J/kg.K)

Diketahui :

$$k_{Pw} = 0.2 \text{ W/m.K} \qquad \% \text{Cu} = 90\%$$

$$k_{Cu} = 401 \text{ W/m.K} \qquad \% \text{Pw} = 10 \%$$

$$C_{p_{pw}} = 2000 \text{ J/kg.K}$$

$$C_{p_{Cu}} = 390 \text{ J/kg.K}$$

Persamaan 3.3 dapat digunakan untuk menghitung nilai konduktivitas termal campuran *paraffin wax* dengan serbuk tembaga fraksi massa 10% yakni :

$$k = 90\% \cdot 0.2 W/m. K + 10\% \cdot 401 W/m. K$$
$$= 40.28 W/m. K$$

Persamaan 3.4 dapat digunakan untuk menghitung nilai kalor jenis campuran *paraffin wax* dengan serbuk tembaga fraksi massa 10% yakni :

$$C_P = 90\% \cdot 2000 \ J/kg.K + 10\% \cdot 390 \ J/kg.K$$

= 1839 $J/kg.K$

Nilai-nilai properti pada campuran *paraffin wax* dengan serbuk tembaga dapat dilihat pada Tabel 3.4

Kriteria	Satuan	Nilai
Densitas fase padat (T = 28 °C)	kg/m ³	934
Densitas fase cair (T = $68 ^{\circ}\text{C}$)	kg/m ³	823,5
Konduktivitas termal	W/m.K	40,28
Kalor lebur	J/kg	127.660
Viskositas	Pa.s	0,100653
Titik beku	°C	56,65
Titik leleh	°C	61,52
Kalor jenis	J/kg.K	1839

Tabel 3.4 Nilai Properti Campuran PCM

3. Penentuan Zona Cell

Pada tahap ini sekumpulan area mesh didefinisikan sebagai sebuah zona yang mewakili suatu daerah. Pada penelitian ini area mesh dibagi menjadi tiga zona yaitu, HTF, PCM, dan pipa tembaga. Panel tampilan *cell zone* dapat dilihat pada Gambar 3.12.

4. Penentuan Boundary Conditions

Boundary conditions berfungsi untuk menentukan kondisi batas pada tiap zona. Pada tahap ini berguna untuk menentukan debit air dan temperatur air pada *inlet*. Penggunaan *profile* dipakai untuk data temperatur *inlet* pada proses *charging* dan debit air pada proses *discharging* secara bertahap. Gambar 3.13 menunjukkan panel *boundary condition* pada *inlet*.

ask Page	Mass-Flow	Inlet						>
Boundary Conditions	Zone Name							
Zone Filter Text	inlet							
inlet	Momentum	Thermal	Radiation	Species	DPM	Multiphase	Potential	UDS
interface-htf-dalam_1 interface-htf-dalam_10		Refere	ence Frame A	bsolute				
interface-htf-dalam_11	Mass Flo	w Specificati	ion Method M	ass Flow Ra	te			*
interface-htf-dalam_12		Mass Fl	ow Rate (ko/s	0.048945	5	co	nstant	
interface-htf-dalam_13 interface-htf-dalam_14	Supersonic/Init	tial Gauge Pr	essure (pasca) 0		сог	nstant	•
interface-htf-dalam_15	Directio	on Specificati	ion Method N	ormal to Bo	undarv			
interface-htf-dalam_16 interface-htf-dalam_17 interface-htf-dalam_19		Turbulenc	e on Method In	tensity and	Viscosity	Ratio		÷
interface-htf-dalam_10				Turbulent	Intensity	(%) 5		p
interface-htf-dalam_2 interface-htf-dalam_2				Turbulent '	Viscosity	Ratio 10		P
interface-htf-dalam_21 interface-htf-dalam_22 interface-htf-dalam_23			0	K Cancel	Help			

Gambar 3.13. Panel Boundary Condition pada Inlet

5. Penentuan Mesh Interface

Mesh interface berfungsi sebagai penyambung antar *zone* dengan *zone* lainnya. Pada penelitian ini digunakan *interface coupled* dan *mapped* dikarenakan adanya gap antara *zone*. Panel *interface* dapat dilihat pada Gambar 3.14.

Task Page	Create/Edit Mesh Interfaces		
Mesh Interfaces	Mesh Interface	Interface Zones Side 1	Interface Zones Side 2
Mesh Interfaces	interface-pd-1	interface-htf-dalam_1	interface-pipa-luar_1
interface-pd-1		TX [1/128]	[1/128]
interface-pd-10	interface-pd-1	interface-htf-dalam_1	interface-pipa-luar_1
interface-pd-12 interface-pd-13 interface-pd-14	interface-pd-10 interface-pd-11 interface-pd-12 interface-pd-13	interface-htf-dalam_10 interface-htf-dalam_11 interface-htf-dalam_12 v interface-htf-dalam_13 v	interface-pipa-luar_10 interface-pipa-luar_11 interface-pipa-luar_12 interface-pipa-luar_13
interface-pd-15	Interface Options	Boundary Zones Side 1	Interface Wall Zones Side 1
interface-pd-17	Periodic Boundary Condition	hterface-pd-1-side1-wall-interface-htf-dalam_1	interface-pd-1-wall1-1-1
interface-pd-18	Periodic Repeats	Boundary Zones Side 2	Interface Wall Zones Side 2
interface-pd-19		interface-pd-1-side2-wall-interface-pipa-luar_1	interface-pd-1-wall2-1-1
interface-pd-2 interface-pd-20 interface-pd-21 interface-pd-22 interface-pd-23	Matching Mapped Static		Interface Interior Zones
interface pd 24	Periodic Boundary Condition		
interface-pd-25 interface-pd-26 interface-pd-27		Create Delete Draw List Close H	telp

Gambar 3.14. Panel Mesh Interface

6. Pembuatan Report

Pembuatan *report* dilakukan untuk menghasilkan data *output*. Langkah awal pembuatan *report* yaitu membuat *point* terlebih dahulu dengan koordinat yang telah ditentukan. Kemudian menentukan data output yang akan dihasilkan, seperti temperatur pada tiap point. Pada Gambar 3.15. menunjukkan panel tampilan *report*.

Gambar 3.15. Panel Tampilan Report

7. Penentuan Metode Perhitungan

Pada tahap ini pemilihan metode perhitungan dapat mempengaruhi proses simulasi yang dimana dapat berjalan dengan stabil dan menghasilkan perhitungan yang akurat. Metode perhitungan ini melingkupi dari penentuan nilai *Under Relaxation Factor* (URF), *Solution Methods* dan *initialization*. Penentuan nilai URF, *Scheme Solution Methods* dan *Solution Initialization* dapat dilihat pada Gambar 3.16, Gambar 3.17 dan Gambar 3.18.

Pada penelitian ini nilai *density*, *body force* dan *energy* pada URF diubah dari 1 menjadi 0,8.

Gambar 3.17. Panel Tampilan Solution Methods

Dipilihnya *Scheme* SIMPLE pada simulasi ini dikarenakan pada proses perhitungannya lebih cepat dan cukup akurat daripada *Scheme* yang lainnya.

			S ↔ @ @ /	Residuals continuity x-velocity y-velocity z-velocity energy		1	e+ e+	01 00
Jit interor-val_htf (met, Jit outlet (presure-out). Jit wall_htf:1 (wall) Ø Dynamic Meth @ Reference Values Solution @ Solution @ Controls @ Report Definitions 〕 @ Monitors	Patch Reference Frame Reference Frame Reference State Referen	Value (k) 343 Use Feld Function Field Function		Zones to Patch Filter Text] 🖬		7	×
Cell Registers Cell Selaston Calculation Activities fill Autosave (Every Tim. fill Execute Commands fill Solution Animations fill Solution Animations fill Solution Animations fill Register Operation fill Registers fill Calculation fill	Y Velocity Z Velocity Temperature Phi for wall distance	Patch Cost	e Hel	Registers to Patch [0/0]			7	Ξ¥.

Gambar 3.18. Panel Tampilan Solution Initialization

49

Pada menu initialisasi dipilih metode *hybrid initialization* dikarena dapat memberikan perhitungan yang cepat pada suatu aliran dari metode yang ada. Pada saat kasus *discharging* nilai awal temperatur diatur 343 K.

8. Proses Perhitungan

Pada penelitian menggunakan *time-solver* kondisi *transient*. Oleh karena itu jumlah *time step* mempengaruhi hasil dari simulasi. Gambar 3.19 merupakan penentuan *time step* berserta *Max iterations*.

Tree	Task Page		×
Y 🍓 Setup	Run Calculation		
B Models	Check Case	Preview Mesh Motion	
> 🐻 Materials	Time Stepping Method	Time Step Size (s)	
Cell Zone Conditions	Fixed •	1	p
>]‡ Boundary Conditions	Settings	Number of Time Steps	-
> 🚺 Mesh Interfaces	a a consideration of the second se	1000	
Dynamic Mesh	Options	10000	
Kererence values	Extrapolate Variable	s	
Methods	Data Sampling for T	ime Statistics	
& Controls	Sampling Interval		
> Report Definitions	1 A	Sampling Options	
> 🛐 Monitors	1 1	territoria eterritori	
Cell Registers	Time Sample	d (s) 0	
L ₀ Initialization	Solid Time Step		
> Init Calculation Activities	User Specified		
Run Calculation	 Automatic 		
Granhics			
> In Plots	Max Iterations/Time Ste	p Reporting Interval	
Scene	20	1	
> 🛄 Animations	Profile Update Interval		
> Reports	1		
Parameters & Customization	Data File Ouantities	Acoustic Signals	
	[Acoustic Sources FET	
		Provides Sudices IT In	
	Calculate		

Gambar 3.19. Panel Tampilan Calculation.

3.3.3.3. Post-Processing

Post-processing merupakan proses menampilkan hasil dari perhitungan yang sudah dilakukan. Pada tahap ini hasil dari simulasi dapat ditampilkan dalam bentuk contour dan animasi. Pada penelitian ini variable bebas yang dipakai adalah debit aliran dan temperatur *inlet*, sementara *variable* terikatnya yaitu evolusi temperatur, *contour* pelelehan dan pembekuan, dan waktu pelelehan dan pembekuan. Pada Gambar 3.20 merupakan hasil dari *contour* pelelehan.

Gambar 3.20. Hasil Contour Pelelehan pada PCM