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ABSTRACT

This paper presents the effect of input source energy on the results of spectral analysis of surface wave
(SASW) evaluation of flexible pavements in terms of maximum and minimum wavelength. A series of
surface wave tests, namely the SASW test, were done on asphalt pavement using four steel balls with
different masses as sources. These sources were dropped from two different heights, 0.25 and 0.50 m.
This test was also conducted with two different configurations, i.e. with the receivers positioned 0.15 and
0.30 m apart. This paper also presents the feasibility of using accelerometers to measure flexible pavement
deflection. For this purpose, the process of integrating accelerometer time history is described. It is proved
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that a change in input source energy has some effect on the value of maximum and minimum wavelength.
The result for numerical double integration is satisfactory and is congruent with the displacement obtained

through finite element analysis.

1. Introduction

The use of surface wave in seismic testing has gained popular-
ity in engineering practice as a method for determining shear
wave velocity profile (Stokoe et al. 2004, Lin and Lin 2007). The
surface wave testing in engineering, which have been used quite
extensively for quite some time, is associated with the two-sta-
tion set-up used in the spectral analysis of surface wave (SASW)
method (Kausel and Roesset 1981, Nazarian et al. 1988, Rix and
Stokoe 1989, Gucunski and Woods 1991, Nazarian and Desai
1993). The systematic introduction of the seismic surface wave
method to engineering applications has resulted in an increased
use of this non-destructive testing technology (Nazarian and
Stokoe 1986). In general, SASW has been widely used as a
non-destructive test for evaluating subsurface parameters in soils
and pavements. SASW utilises Rayleigh waves which propagate
at different velocities depending on frequency. The dispersive
characteristics of Rayleigh waves propagating through a lay-
ered material were measured and were then used to delineate
the modulus profile of a pavement section and also to evaluate
the S-wave profile of the material (Stokoe et al. 1994, Stokoe
et al. 2004). Dispersion curve is a plot of variation in Rayleigh
wave phase velocity against wavelength or frequency (Kumar
and Naskar 2015).

The SASW method is a simple technique which could be easily
implemented in the field. It has a source-receiver configuration
with multiple sources which are carefully selected for the meas-
ured wavelength range of each source-receiver configuration,

and therefore provide high-quality results. Phase velocities are
calculated from the phase difference. The key feature of SASW
method is that it measures apparent velocities, which correspond
to the superposed mode of higher mode surface waves and body
waves. Determination of apparent phase velocities incorporates
phase unwrapping. The phase unwrapping procedure often
requires experienced personnel making the best decision during
the unwrapping process. However, the non-systematic nature of
unwrapping a phase could be improved with a signal processing
technique, such as the impulse response filtration technique (Joh
et al. 1997) and Gabor spectrum.

SASW is capable of accurately defining the elastic moduli
and the thickness of layered systems, such as soil and pavement,
with a particular advantage of it being performed entirely on the
surface (Gucunski and Woods 1992). In general, waves travel
at high velocity (and high frequency) in pavement materials. It
is known that the higher frequency waves are associated with
shorter wavelength and, as a result, these waves propagate only at
shallow depths. On the other hand, lower frequency waves have
longer wavelength and travel through deeper layers (Jones 1962,
Heisey et al. 1982, Nazarian 1984). For asphalt pavements, the
ground is excited using a small impact source to generate waves
propagating at shallow depth. Roesset et al. (2011) stated that: (1)
an increase in the height of the dropping mass lead to an increase
in impact velocity and contact force; and (2) an increase in the
dropping mass results in an amplification of the low frequency
components of the Fourier Spectrum of the contact force (Kumar
and Naskar 2015).
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Very recently, several studies were conducted to evaluate
pavements using the SASW method through the use of a spher-
ical mass dropped from different heights (Kumar 2011, Kumar
and Rakaraddi 2012, Kumar and Rakaraddi 2013a, 2013b, Kumar
and Hazra 2014a, 2014b, Kumar and Naskar 2015). A study on
concrete pavements conducted by Kumar and Hazra in 2014
found that the value of maximum and minimum wavelength
is a function of the magnitude of the input source energy. The
researchers also confirmed the usefulness of SASW technique in
exploring the shear wave velocity profiles of different pavement
layers. In 2012, Kumar and Rakaraddi revealed that there is a
need to consider the height of fall of dropping weight in SASW
testing. Their 2013 research showed that the distance between the
source and first receiver for cement concrete pavements should
be greater than the distance for asphaltic pavements. Their find-
ing showed that the acceptable distance for tests on asphaltic
pavements is 0.5-0.75 m. This paper improves the findings of
these studies, in that this study was applied to the condition of
asphaltic pavement in Malaysia, with the recommendation and
addition of variation in receiver distance.

This study was also conducted to investigate the feasibility of
using accelerometers to measure road deflection. Measurement
of road deflection due to traffic loading always requires complex
installation of sensors and is often regarded as a trivial job. This
paper proposed the use of accelerometers as a small yet reliable
sensor to measure road deflection by performing numerical dou-
ble integration. Currently, other than geophones, accelerometers
are one of the devices widely used to obtain either dynamic meas-
urements, which are mainly used to measure track deflection
(Hall 2003, Bowness et al. 2007, Priest and Powrie 2009, Jiang,
Bian, Cheng, et al. 2016, Jiang, Bian, Jiang, et al. 2016, Sayeed and
Shaheen 2016), or static measurement, such as bridge deflection
(Roberts et al. 2001) and road deflection (Arraigada and Partl
2006, Simonin ef al. 2009). The installation of the sensors is prac-
tical and easy, with the robust POLLCA hardware providing a lot
of advantage due to its handling mobility and portability. The use
of POLLCA could be a low-cost solution for the measurement
of road deflection in industry.

From this measurement, the recorded time series were used
to measure deflection. This paper shows the feasibility of using
the measurement obtained from using accelerometers to measure
road deflection. According to Simonin et al. (2009), road deflec-
tion measurement is the first element in evaluating road bearing
capacity. The measurement level, however, quickly changes along
the roadway. Thus, the placement of the measurement device
(in this case, accelerometer) on road surface is crucial to ensure
accurate results.

2. Methodology

A series of field tests were carried out to investigate the effect of
input energy on SASW evaluation in terms of maximum and
minimum wavelength. The SASW method makes use of the
determination of phase difference between two receivers over
a wide range of frequencies. With regard to data collection for
the experiment, the equipment and testing configuration used
in this test is closely related to the scope of the test and the tech-
nique to be used in the interpretation of the results. In order to
determine the length of the measurement, the desired depth of
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investigation must always be taken into account. The relation-
ship between frequency, wavelength and phase velocity makes
the frequency range of interest closely related to the materials
to be investigated. For example, deep penetration in soft soils
requires lower frequency components (Roesset 1998). Therefore,
preliminary information, or a-priori’ knowledge, regarding the
site being investigated is very helpful.

2.1. Testing equipment

The basic equipment used in the SASW test comprised of receiv-
ers (accelerometers) connected to an acquisition device which
digitises and stores seismic signals. The desired depth of pene-
tration will determine the appropriate type of receivers and the
specifications required. Various types of recording equipments,
the main function of which is to digitise and record analog elec-
tric signals generated by the receivers, could be used. The use
of digital signal analyzer allows signal to be processed in real-
time, therefore quality assessment and preliminary interpreta-
tion could be performed instantly on site. In this test, data were
recorded using a Portable Outdoor Laptop with a Customized
Compact Analyzer (POLCCA). It is a portable field laptop with
built-in dynamic signal analyzer. In this test, which was done
on asphalt pavement, steel balls 25.4, 38.1, 50.8 and 76.2 mm in
diameters were used.

2.1.1. Sources in SASW Testing

Several sources were used in the SASW testing to excite the
ground, induce vibration and produce waves which travel
through the layered systems (in this case the asphaltic pave-
ment). Different types of sources can be used, which range from
ordinary hammers to expensive controlled source. Controlled
sources allow for the collection of high-quality data with high
signal to noise ratio.

Sources are typically applied by dropping weights of different
sizes (Roesset 1998). For further source offset which requires
longer frequency range to penetrate deeper into the ground,
an ordinary impact hammer might not be sufficient. Therefore,
heavier sources are required. In this test, the sources used were
four steel balls with varying mass and diameter, as shown in
Figure 1.

Figure 1. Steel balls with different diameters and masses, m used in the test.
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Table 1. Characteristics of the accelerometer according to manufacturer’s
specification.

Series 352C68
Sensitivity (£10%) 100 mV/g
Measurement range 50 g pk
Frequency range (£10%) 0.3-12,000 Hz
Resonant frequency >35kHz
Spectral noise (10 Hz) 16 ug/VHz

2.1.2. Sensors

In order to choose an appropriate sensor with the desired speci-
fication, it is necessary to relate it with the desired depth of pen-
etration. The typical frequency range for pavements is between
1000 and 15,000 Hz, and this makes accelerometers the best sen-
sors for measurement on pavements as it has higher resonance
frequency compared to geophones.

For pavement testing where the frequency range is of particu-
lar interest, or when testing stiffer materials where the desired
depth is shallow, accelerometers are typically used as receivers.
Accelerometers can reach operative frequencies in the kHz range
and as with any other types of dynamic sensors, data can be syn-
thesised in the time or frequency domain. Accelerometers are
for the most part micro-electromechanical systems, or MEMS.
The basic principle operating behind the MEMS accelerometer is
the displacement of a small proof mass marked onto the silicon
surface of the integrated circuit (IC) and suspended by small
beams. As acceleration is applied to the device, a force develops
which displaces the mass. Support beams act as a spring, and
fluid (usually air) trapped inside the IC acts as a damper, resulting
in a second-order lumped physical system.

In this study, accelerometers are used to acquire time history
data to detect small vibration signals with good accuracy. It is
chosen based on factors such as frequency response, sensitivity
and noise tolerance. The details of the sensor are presented in
Table 1.

2.2. Test configuration

For the field test, two accelerometers were located in an array
for two types of configurations. In the first configuration, the
accelerometers were positioned 0.15 m apart, and in the second
configuration, the accelerometers were positioned 0.30 m apart.
Both accelerometers were mounted with weights, as shown in
Figure 2, to ensure good coupling between accelerometers and
pavement surface. For the first configuration, three source dis-
tances, 0.15, 0.3 and 0.6 m, from the first receiver were used. For
the second configuration, the sources were positioned 0.30, 0.6
and 1.2 m from the first receiver. Steel balls were used as a source
and measurements were recorded for both configurations and
for all source distances. The tests were carried out by dropping
the steel balls from two different heights, 0.25 and 0.50 m. Figure
3 shows the distance layout of the receiver, the distance of the
sources and height of the dropping balls. Input source energy is
plotted in Joule, and is calculated using Equation (1):

Energy = mgh (1)

where m is mass of the dropping ball (kg), g is the acceleration
due to gravity (9.81 ms™) and h is height of fall of the ball (m).

Figure 2. Weight-mounted accelerometers used during measurement.

2.3. Numerical integration of acceleration

It is generally known that acceleration time history can be used
to obtain displacement. This can be done by applying double
integration to the acceleration data signal. Although theoreti-
cally it looks like a straightforward procedure, it is actually much
trickier than it actually seems. The acceleration data signal must
be firstly numerically integrated to obtain velocity, and thereafter
numerically integrated again (this is the second integration) to
obtain displacement. Numerical double integration of accelera-
tion data signal involves errors that should be carefully studied
and minimised. Errors could occur because, when integrating,
low frequency contents of the waveform are greatly amplified,
high frequencies are reduced and hence the phase is changed
(Arraigada and Partl 2006). These problems, if not studied and
handled properly, could affect and dominate the final result of
the calculated displacement. In this paper, however, there is no
frequency domain and hence no phase change. Also, a bandpass
filter was applied during calculation to control the cut-off fre-
quency accurately.

The displacement, velocity and acceleration parameters
are closely related to one another (Arraigada and Partl 2006).
Conversion can be done using the digital signal process-
ing procedure by performing a single or double integration.
Mathematically, displacement can be calculated from acceler-
ation using Equation (2):

T

d.(t) =dy+ vt + J dtJ a(r)dr (2)
0

0

where d,| is initial displacement at ¢ = 0, v is initial velocity at
t=0and d_is calculated displacement at ¢.

It is known that the above equation is applied only for contin-
uous (analog) function. Equation (3) can be used for a numerical
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Figure 3. Layout of the SASW test configuration, with POLCCA.

integration (applied when the signal is discrete or digital) in the
time domain:

1) n . .
J a(tdt = Y (W)At 3)
I=1

t(0)

where a(t) is continuous time domain waveform, a(i)a is ith sam-
ple of the time waveform, At is time increment between sample
(t(i) — t(i — 1)) and n is number of sample of the digital record.

Velocity then can be computed from the acceleration signal
using Equation (4), and thereafter displacement can be calculated
using Equation (5):

+ a(l—i)+ a(i)At

v.@)=v(i-1) 5

(4)
and

v(l—i)+ v(i)At

dG)y=dG-1)+ ;

(5)
where a(i) is ith sample of acceleration waveform, v (i) is ith
sample of calculated velocity and d (i) is ith sample of calculated
displacement.

In his paper, Joh (Joh et al. 2014) elaborated on velocity inte-
gration and its verification through laboratory tests such as LVDT
measurements and potentiometer measurements. Numerical
double integration is also discussed by Arragaida (Arraigada and
Partl 2006) with verification of lab result from LVDT monitoring.

3. Results and discussion
3.1. Effect of input source energy

In order to obtain a reliable evaluation of stiffness profile, a sin-
gle source and receiver set-up is not sufficient to determine the
phase velocity over a wide range of wavelengths. Therefore, sev-
eral measurement set-ups incorporating several source locations
should be used. This source offset concept was used during field
measurement. For a receiver distance of 0.15 m, the source offset
is kept constant at 0.15, 0.30 and 0.60 m from the first receiver.
The dispersion curve is a combination of three individual disper-
sion curves from three locations of source offset. Figure 4 shows
the dispersion curves obtained using all four balls as sources with
0.15 m receiver distance, at dropping heights 0.25 and 0.50 m,
respectively.
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Figure 5. Dispersion curves from SASW measurements with 0.30 m receiver distance for height of dropping mass 0.25 and 0.50 m.

For a receiver distance of 0.30 m, the source offset is kept con-
stant at 0.30, 0.60 and 1.2 m from the first receiver. Figure 5 shows
the dispersion curves obtained using all four balls as sources
with 0.30 m receiver distance, at both 0.25 and 0.50 m dropping
heights. Both measurement set-ups are shown in Figures 4 and 5;
the figures show that the increase in steel balls with larger mass
or diameter yielded higher values of A_. and A__ .

It can also be proven that for both heights of dropping ball, the
ball with the largest mass, namely Ball 4, produced the largest wave-
length, and vice versa. Ball 4 not only has the highest mass but also
the largest diameter, which means larger surface contact between
the pavement surface and the steel ball. It therefore resulted in a

longer duration of contact time. Previous studies have shown that
the duration of impact has a profound effect on the dominant spec-
tral content of the emerging signal (Kumar and Hazra 2014a, 2014b,
Barness and Trottier 2009a, Barness and Trottier 2009b). This has
been distinguished in this research, as evident in both Figures 4
and 5, which shows that impacts of long duration generate low
frequency signals which in turn result in deeper exploration depth.
On the other hand, smaller balls generate high frequency signals
which produced shorter duration impacts.

For the different heights of fall of the dropping mass, the val-
uesforA . andA__ were obtained from the dispersion plots and
these values are tabulated in Table 2 for a receiver distance of



Table 2. Comparison of A . and A values for different drop heights of steel balls
for a receiver distance of 0.15 m.

Height of fall, H (m)

Ball diameter 0.25 0.0
Ball no (mm) Apae (M) A (m) A (m) A (m)
1 25.40 0.5585 0.0939 0.5864 0.0979
2 38.10 0.6371 0.1012 0.6389 0.1013
3 50.80 0.6809 0.1025 0.6856 0.1028
4 76.20 0.7057 0.1029 0.7392 0.1032

Table 3. Comparison of A . and A . values for different drop heights of steel balls
for a receiver distance of 0.30 m.

Height of fall, H (m)

Ball diameter 0.25 0.0
Ball no (mm) A (M) A (m) A (m) A (m)
1 25.40 1.4624 0.1024 1.5846 0.1207
2 38.10 1.6389 0.1211 1.7082 0.1215
3 50.80 1.7173 0.1291 1.7297 0.1295
4 76.20 2.0148 0.1300 2.0811 0.1306

0.15m, and in Table 3 for a receiver distance of 0.30 m. Regardless
of the receiver distance, either 0.15 or 0.30 m, height of fall of the
dropping mass does not result in any significant change in the
valuesof A . and A __ . Tables 2 and 3 support this fact.

The source offset concept states that the first source is equal to
the receiver distance; therefore, a longer receiver distance means
that the source is located further away from the receiver. Rayleigh
surface waves spread cylindrically from a point source and tend
to dominate the measured wave field at large distance. In sim-
pler terms, large receiver distance allows wavelength to penetrate
deeper and therefore provide information of the subsurface in
the lower frequency region. This study could serve as a guide in
determining the proper configuration for obtaining data within
the depth of interest of the pavement layer.

The differencesin A , and A___with different input source
energies are plotted exclusively for receiver distance 0.15 m
and are shown in Figure 6 while Figure 7 shows the plot for
receiver distance of 0.30 m. It can be seen that A _increases
linearly with an increase in the magnitude of input energy.
This is true for both receiver distances. Figures 6 and 7 also
show that A_. increases with an increase in the magnitude
of input energy. In other words, contrary to the maximum
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Figure 6. The effect of changes in input energy on maximum wavelength (A __)and

minimum wavelength (A_ ) for receiver distance, S =0.15 m.
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min

wavelength, the height of dropping mass and the mass of the
steel ball do not have significant effect in the value of mini-
mum wavelength.

Inversion analysis was also done to obtain the layer properties
of the pavement. The shear wave velocity profiles of four cases
were generated and are shown in Figure 8. SASW method uses
the ‘superposed’ mode, which does not fall into specific normal
modes (fundamental and higher modes). This is an important
feature since for irregular pavement layering systems, these
superposed/apparent phase velocities fall in between the nor-
mal modes. And since source location for pavement testing is
also close to the receiver location, mode separation of surface
wave is not practical (Stokoe et al. 2004). Therefore, for pave-
ment testing, the SASW method, which incorporates superposed
mode of higher mode surface waves and body waves, has a sig-
nificant advantage over methods such as MASW and ReMi in
terms of the application of modes for inversion analysis. The
phase unwrapping procedure is also cumbersome in irregular
pavement layering systems, but can be improved through sig-
nal processing technique called the Impulse Response Filtration
(Stokoe et al. 2004).

3.2. Numerical integration of acceleration data to obtain
displacement

Acceleration data are obtained from raw output voltage
which is measured through acceleration sensitivity. Bandpass
filtering was applied to acceleration data which was then
integrated to obtain velocity. Filtration was done to remove
high frequency noise and low frequency drift of the signals.
Displacement was then obtained through analysis which is
equivalent to integrating velocity signals after performing the
filtration process. Figure 9 shows the acceleration time history
obtained from Accelerometer 1 and its velocity after the first
integration. The extracted data were from the measurement
obtained from using Ball 4 as a source (refer to Figure 1). In
the SASW method, the sensor/receiver located nearest to the
source (where the load is applied) is called Accelerometer 1,
while the second sensor/receiver located after the first one is
named Accelerometer 2.

This makes sense since as the travelling time of the signal
increases, more energy is dissipated and therefore the signal gets
weaker as it reached the second sensor. This explains the higher
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Figure 9. Calculated velocity obtained from acceleration time history recorded by accelerometer No 1.

amplitude of the signal recorded by Accelerometer 1 compared
to the signal recorded by Accelerometer 2, as shown in Figure
10. Figures 9 and 10 show the velocity obtained from the first
numerical integration of the acceleration signal. In this meas-
urement record, the sampling rate is taken as 19 sample/s. The
frequency span of the recorded data is 20 kHz. The time length
recorded is 0.051175 s with 1024 frequency lines.

Displacement was then obtained by analysing and synthe-
sising velocity data using Equations (2)-(5). The displacement
obtained from the numerical double integration is shown in
Figure 13 together with the displacement obtained through
FEM. The figure will be discussed in the following section. The
numerical integration produced good result, which is congruent
with the displacement from FEM.
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3.3. Validation of displacement through finite element
analysis

A model of layered pavement was built using commercial finite
element analysis software called ABAQUS; it consists of a 0.10 m
asphalt layer with a density of 2300 kg/m?, a 0.50 m base layer
with a density of 2100 kg/m? and a 0.25 m sub-base layer with
a density of 2100 kg/m’. The elastic moduli of the layers are
2500, 1000 and 500 MPa, respectively. The Poisson’s ratio for
asphalt layer is 0.35 while the base and sub-base layers share the
same Poisson’s ratio of 0.4. These parameters are in accordance
with the specification set by The Department of Development
Management and the Public Works Department (JKR 2008). The
segment of the pavement layer and its characteristics are shown
in Figure 11.

Figure 11. The model of pavement layer built in Finite Element Analysis’ software.

An impulse force of 17.7 N was applied to the pavement layer
to obtain a structural response in terms of displacement. The
change in momentum occurred at 0.017 s of period in time (dur-
ing the impact), and assuming that there is no energy lost, the
dropped mass is calculated to be 1.805 kg, which is the mass of
Ball 4 (refer to Figure 1). Damping was neglected since very little
energy was dissipated over a short period of time. The analysis
was performed for a period of 0.105 s with a time increment of
1 x 10 7 second.

There are many factors contributing to the dynamic defor-
mations of road, although according to Arraigada and Partl
(Arraigada and Partl 2006), it is usually likely to find very small
deformations at low frequencies. This happened because very
little acceleration was recorded in the low frequency region.
Figure 12 shows a sequence of pictures arranged to show the
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Figure 13. Comparison of displacement result obtained from numerical double integration and finite element analysis method.

occurrence of deformation in step motion during the period
when the impulse force was applied to the model. Although the
energy dissipates, the observed displacement was significantly
small because the load applied was very small too.

The data collected post-analysis from the FEA software were
plotted together with the displacement result obtained through
velocity integration, and are shown in Figure 13. One appar-
ent observation is that the displacement due to FEM resulted in
lower valley compared to displacement due to numerical integra-
tion. This means that it has higher deflection. Other than that, the
displacement result seems more stable during the impulse com-
pared to the displacement obtained from numerical integration.

Peak difference could also occur because the integration
procedure was adversely affected by the baseline offsets of the

sensors. However, as can be seen in the figure, the later signal is
smoothed out when the numerical integration method was used
compared to the FEM analysis. Although it is not very significant,
this could be one of the advantages of the double integration
procedure.

4. Conclusion

Based on SASW test done on asphaltic pavement, the effect of
input source energy on the maximum wavelength (A_ ) and
minimum wavelength (A_. ) was explored. The A___increases
linearly with an increase in the input source energy due to the
change in the height and the mass of the dropping ball; both
these factors have a significant effect on the value of A__ . It can



also be concluded that both the height and mass of the dropping
ball have marginal effect on the value of /\mm, as the result shows
that its value is almost constant even when the magnitude of the
input source energy was increased.

As stated in the earlier section of this paper, measurement of
road deflection due to traffic loading could be done in a simple
manner through the use of accelerometers. This, with the help
of POLLCA, could provide many advantages, especially in terms
of handling and mobility. It could be a low-cost solution for the
measurement of road deflection in industry. The validity of using
accelerometers as sensors to measure displacement was also ver-
ified using the finite element analysis software which gives good
results when comparison was made. This study can be used as
a guide for determining the receiver and array configuration in
an SASW test on any pavement site. Researchers could also use
accelerometers as sensors to evaluate road deflection.
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