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The deflection basin obtained through backcalculation analysis is compared with the measured deflection
basin to determine the moduli of each pavement layer. Most computer programs use multi-layered elas-
tic theory (MET) to perform backcalculation for determining deflection basin. Other structural analysis
techniques, such as finite element method (FEM) and finite difference method (FDM), can be used to
model flexible pavement structures when conducting FWD tests. Unlike FEM, MET analysis does not take
into account nonlinear materials and dynamic loading. This study aims to develop a better finite element
(FE) model by using the static and dynamic analyses in the ANSYS computer program. A comparative
study was conducted by using varying sizes of model geometry and different types of elements and sizes
to determine how they affect the developed FE model. The results of the analyses show that transient
dynamic analysis is the best method for simulating FWD test. The percentage of errors between FE deflec-
tion basin and measured deflection basin range between 0.94 and 5.01%. Model geometry of 5000 x 5000
mm is sufficient to produce a good deflection basin which approximates the measured deflection. To
ensure the accuracy of the developed model, the information on material properties must be valid.
Additionally, finer and higher order elements should be used close to the loading region, for instance four
or eight-node quadrilateral element (CAX4 or CAX8) with quadratic interpolation function.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

The structural condition of a pavement must be evaluated to
determine its remaining life and identify the best method for reha-
bilitation. Non-destructive testing (NDT) is the most frequently
used method for examining the conditions of pavement structures.
NDT measures the stress-strain properties of pavement layers at
relatively low strain levels. The two main categories of NDT are
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surface deflection basin and surface wave methods. The most fre-
quently conducted NDT is the falling weight deflectometer
(FWD) test, which is classified in the surface deflection basin cate-
gory [1-3].

In the FWD test an impulse load is imposed on the pavement
surface by dropping a mass of weight on a circular plate which
has a rubber seal placed between it and the pavement surface to
prevent a direct impact of the load. Sensors and geophones located
at several radial offsets are used to measure the surface deflections
directly under the plate. The measurement made by each geo-
phone represents the deflection of a pavement structure at a par-
ticular location [1,2,4,5]. For instance, the measurement for the
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deflection of the top layer is made by the first geophone or at the
center of the loading plate.

FWD data is frequently used for performing back calculation
analysis [6]. Backcalculation of the measured deflection basin of
an FWD test can be used to derive the elastic modulus of each
pavement layer [1,4,5,7]. The backcalculation of layer moduli
involves two steps. The first step calculates deflections at various
radial offsets from the center loading which represents the deflec-
tion basin, and the second step compares the calculated deflections
with the measured deflections by using proper error minimisation
algorithm to determine the layer moduli combination [8-10].
Among the structural analysis techniques used to obtain the calcu-
lated deflections in the first step of back-calculation analysis are
multilayered elastic theory (MET), finite element method (FEM),
and finite difference method (FDM) [1,4,11].

Most backcalculation analysis programs, such as BISDEF, ELS-
DEF, MODULUS, MODCOMP, WESDEF, and EVERCALC, use MET to
calculate the deflections in FWD test [10,12,13]. A review of the lit-
erature shows that very few programs use FEM to address the con-
ditions of an FWD test and the properties of a pavement layer
during deflection analysis since most of backcalculation analysis
programs were developed prior to the computer technology revo-
lution of the 1980s. Since then most researchers have focused only
on modelling FE for flexible or rigid pavement structures, with very
little attention being given to analysis of FWD deflection basin [9].

Tarefder and Ahmed [9] used FEM to perform dynamic and sta-
tic analysis of FWD deflection basin which takes into account non-
linear materials. They used ABAQUS to develop both axisymmetric
and quarter cube models to simulate the time-deflection histories
of an FWD test. They compared the results of dynamic, static, and
field deflection basins and found that the deflection basins gener-
ated by the dynamic and static analyses are very similar to the
measured deflection basin. The result of static analysis is closer
to the measured deflection basin compared with that generated
by the dynamic deflection basin. The axisymmetric model yields
better results than the quarter cube model.

Uddin and Garza [14] developed a 3D-FE model of a flexible
pavement and imposed a dynamic load on the model to observe
the response of the pavement structure. The model was simulated
using the load time history of an FWD test. The 3D-FE half models,
with and without infinite elements, were evaluated using Green'’s
function and the results revealed the limitation of using infinite
elements for pavement models. The analysis also determined the
time-dependent deflections at different frequencies. A natural fre-
quency of 8 Hz was determined in the analysis. The researchers
also noted that damping resulted in smaller peak deflection.

Kuo and Chou [15] used ABAQUS to develop the procedures for
building a 3D FE model of flexible pavement by performing static
analysis. A semi-infinite elastic solid was modeled and compared
with the calculated displacement and stress by using the Boussi-
nesq solutions to obtain guideline for model size and meshing.
The model should consist of finite elements that are at least three
times the loading diameter. Infinite elements should be used
beyond the boundary of the finite elements. The viscoelastic
behavior of the pavement structure was also validated under
wheel loading. Results show that the model can properly simulate
the behavior of a flexible pavement and can be used to predict
pavement response.

Hadi and Bodhinayake [16] used the FE ABAQUS to model a
three-dimensional pavement structure which was then subjected
to static and cyclic loadings while taking into account the linear
and nonlinear material properties of the pavement layers. Results
show that, when the pavement structures are assumed to have sta-
tic load and linear elastic materials, the deflections above the sub-
grade layer are higher than the anticipated values or the measured
deflection. Results also show that the calculated displacement

closely approximates the measured displacement under the
assumptions of cyclic loading and nonlinear materials.

Shoukry et al. [17] used DYNA3D to develop a 3D FE pavement
structure model, and imposed a dynamic load on the model to
observe its dynamic response when conducting an FWD test. All
layers are assumed to be elastic material. They also investigated
the effects of the interface of bonded and unbonded layers on pave-
ment response. The researchers concluded that the strength of the
bonds between layers, especially those for flexible pavements,
influenced the results of the FWD test. Unfortunately, their models
are not valid since no comparison with field measurements was
made.

In conclusion, the question frequently raised by the research
community when using FEM for pavement structures is how to
produce a simple model which reduce computation time while
increasing the accuracy of pavement response. Engineering deci-
sions with regard to the type of model, size of model geometry,
type and size of elements used, load condition assigned, etc. must
be made to develop better FE models with higher accuracy and
shorter computation time.

It is important to use an appropriate analysis for the FE model.
Three different approaches can be employed in pavement analysis,
namely static, quasi-static, and dynamic transient analysis. The
static approach has been traditionally used in multilayered elastic
analysis. The quasi-static approach is based on the concept of mov-
ing a load to subsequent positions along the pavement for each
step and assuming that the load is static at each position. This
approach ignores inertia or damping effect. Dynamic transient
analysis is dependent upon two important factors: the inertia asso-
ciated with the moving load and the dependency of material prop-
erties on loading frequency [18]. This paper only looks at static and
dynamic analyses in selecting the best analytical approach which
should be used for flexible pavement analysis in FWD test by
observing the accuracy of vertical deflection which occur in the
deflection basin.

The objective of this study is to develop a better FE model for
pavement structures by using different methods of analysis and
different sizes of model geometry, as well as taking into account
the viscoelastic properties of asphalt concrete under both static
and dynamic loading. Evaluation was done by comparing the
deflection basin generated by the FE models and the field
measurements.

2. Methodology

The general purpose FE program, ANSYS, was used to develop
all FE models in this study. The FE models were developed in
two stages:

i. In the first stage the FE models were developed using both
static and dynamic analysis methods to determine which
of the two methods is more suitable for modelling a flexible
pavement structure for FWD test.

ii. In the second stage a comparison was made by increasing
the size of model geometry and changing the size and type
of the element to determine whether these factors have
any affect on the accuracy of the developed FE model.

The FWD data used in this study was provided by Edgenta Envi-
ronmental & Material Testing Sdn. Bhd. For the pavement evalua-
tion conducted on Jalan Negeri (P10) from Batu Maung to Jalan
Sultan Azlan Shah, Pulau Pinang, Malaysia. Even though the pave-
ment evaluation report [19] stated that the FWD test was con-
ducted at 94 locations, the data for only three sites were utilized
to evaluate the developed FE model. The FWD test was performed
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using the Dynatest device. Information on layer thickness was
obtained from core logs while data on layer properties was
obtained through backcalculation analysis by using ELMOD.

2.1. Finite element analysis in ANSYS

The first step in using ANSYS is to select the appropriate method
of analysis which will be used to evaluate the developed FE model.
Although several methods can be used to do the evaluation, two
methods, i.e. static structural analysis and transient dynamic anal-
ysis, were chosen to evaluate the developed FE models by compar-
ing the RMSE values generated by the FE model with that of the
field measurement.

The displacement, stress, strain and force in a structure or com-
ponent that are caused by imposed loads can be determined using
static structural analysis without taking into account the effects of
inertia and damping. Steady-state loading and response are
assumed to vary slowly with time. Thin models show better perfor-
mance with a direct solver in ANSYS while bulky models show bet-
ter performance with an iterative solver [20]. In the FE method, the
overall equilibrium equation for linear structural static analysis
can be written as

K{q} = {f} (1)

where [K] is total stiffness matrix, {q} is total nodal displacement
vector, and {f} is total load vector. ANSYS will automatically choose
either a direct or iterative solver based on the type of analysis and
model of geometry.

Transient dynamic analysis, which is also known as time-
history analysis, is used to determine the dynamic response of
structures under any general time-dependent loads by taking into
account inertia and damping effects. This type of analysis can be
used to determine time-varying displacement, strain, stress, and
force under any combination of static, transient, and harmonic
loads [20]. The basic equation solved by the transient structural
analysis is:

M{ii} + [C]{ti} + [K]{u} = {P} (2)

where [M] is mass matrix, [C] is damping matrix, [K] is stiffness
matrix, {P} is external force vector, {ii} is nodal acceleration vector,
{11} is nodal velocity vector, and {u} is nodal displacement vector.

ANSYS uses the Newmark time-integration and the Hilber-Hu
ghes-Taylor (HHT) method to solve Eq. (2) at discrete time points.
The dynamic analysis of Eq. (2) takes into account mass inertia and
damping effects. Inertial force is mass multiplied by acceleration,
where acceleration is the second derivative of displacement. Dissi-
pative contribution is determined by damping properties. Damping
could be caused by an arbitrary damping factor, a friction factor, or
the behavior of a viscoelastic material. Additional structural or
mass damping is not required since the asphalt concrete layers
have been assigned viscoelastic properties. On the other hand,
the elastic aggregate base and subgrade layers do not have such
energy dissipation sources, hence a general damping rule is
required for these layers. A frequently used spectral damping
scheme in structure dynamic analysis is Rayleigh damping with a
maximum ratio of 5%.

2.2. Developing a finite element model

The general steps for developing an FE model for a multilayered
flexible pavement structure for an FWD test are: 1) selecting model
geometry, 2) assigning layer properties, 3) meshing the model, 4)
defining boundary conditions, and 5) assigning load conditions.
The following paragraphs will describe each of these steps. Analy-
sis to determine the response of pavement structures, such as

stress, strain, and deflection can be done after developing the
model.

2.2.1. Model geometry

Pavement structures extend infinitely in vertical and horizontal
directions in accordance with the semi-infinite half-space assump-
tions in layer elastic theory. Therefore, the geometry which will be
used to develop the FE model must be determined to ensure the
accuracy of pavement response under loading condition [21]. This
entails determining the setup of the FWD test, the type of geome-
try analysis, and the size of model geometry. According to the
pavement evaluation report, all FWD points are flexible pavements
with four layers, namely surface, base, subbase, and subgrade
layers.

Fig. 1 shows the pavement layers and region that are affected by
the FWD test. Seven sensors, which are located 0, 300, 600, 900,
1200, 1500 and 2100 mm from the 300 mm diameter load plate,
measured the vertical deflections. A short load pulse was applied
on the 150-mm radius load plate to measure the vertical
deflections at each sensor. Deflection is assumed to be equal in
all radial direction. The deflection is maximum at the center of
the load, or 0 mm from the sensor, and gradually decreases with
increasing distance. Based on the setup shown Fig. 1, a decision
can be made on whether to use a 2D plane strain, axisymmetric,
or 3D cube to develop the FE model.

The geometry for analysis of pavement structures can be either
two-dimensional (2D) plane strain, axisymmetric, or three-
dimensional (3D) [9,21,22]. Several researchers have used 2D plane
strain to develop a finite element model for pavement structures
[21-23]. This requires only a short computation time and a small
memory. The accuracy of this model is quite low since 2D plane
strain models can only present load as a line load whereas the
actual traffic load is an ellipse and is normally represented in a
model by two semicircles and a rectangle [9,21].

Axisymmetric model is developed in a 2D geometry space; it
has a cylindrical shape and rotates around a vertical axis [9,22].
It requires a slightly longer computation time than 2D plane strain
models. The main advantage of this model is that it can solve a 3D
structure problem in 2D by using cylindrical coordinates and

Load
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~
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Fig. 1. Setup of FWD test equipment.
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axisymmetric condition. However, this model can only be used for
a single circular load and is not suitable for a dual tire configura-
tion. Even though the model can be used for a special case of all-
round radial shear, it is not able to take into account interface
shear. This model does not have the ability to take into account
any discontinuity in pavement structures, such as joint and cracks,
or shoulder conditions. Therefore, this model is only suitable for
pavement analysis if the loading region is located far from shoul-
ders and cracks [9,21]. Tarefder and Ahmed [9] have shown that
axisymmetric model yields better results than quarter cube model.

A 3D model can take into account conditions of a pavement
structure, such as multiple wheel loading, nonlinear properties of
base materials, pavement distress, and culverts in the subgrade.
It can also analyze models for new pavements or existing pave-
ments with joints, cracks, and discontinuities by taking into
account static or dynamic load, which is not possible when utiliz-
ing traditional 2D models. This model, however, requires a large
storage capacity and is time-consuming, especially when the anal-
ysis involves nonlinear material properties [9,15,21]. Hence, an
axisymmetric model of multilayered flexible pavement structure
was selected to develop an FE model which represents actual
FWD testing condition in the field. Fig. 2 illustrates the axisymmet-
ric model of pavement structure under FWD testing condition.

Although pavements are infinite structures in a real situation,
the present study finite in both vertical and horizontal directions.
The size of geometry model was determined based on literature
review and a comparative study of different domain sizes. In order
to develop the best FE model, Duncan et al. [23] recommended a
model geometry with a length of 50 times and 12 times the radius
of the circular loading area in the vertical and horizontal directions,
respectively. For models with vertical height, the works of Dunlop
et al. in 1970, Yamada in 1970, and Koswara in 1983, which were
mentioned in Tarefder and Ahmed [9], were taken into considera-
tion. They stated that the vertical height of homogenous soil model
should be equal to between 4 and 10 times the width of loading
area for the loading effect to be negligible. Hjelmstad et al. [24]
reported that the effect of boundary truncation is not significant
when vertical length is 150 times larger than the load radius.
Therefore, it can be concluded that the recommended vertical
length is between 4 and 10, 50 and 150 times the radius of loading
area.

The maximum deflection of an FWD occurs close to the loading
area. Huang [28]stated that the deflection value for the last sensor

Sexnsor
|Load
d%‘—ﬂ P .‘/\ 2 . - IN
Surface
Base
Subbase

P .
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%} Subgrade C% / support
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Fig. 2. Axisymmetric model of flexible pavement.

in an FWD test is typically very small and almost zero. Hence, the
vertical stress in the subgrade layer or the stress deep in the sub-
grade layer could be negligible. Stress distribution has a profound
impact on the size of model geometry. A small geometry size is suf-
ficient to capture stress distribution since most deformation occurs
in the subgrade area [25]. Hence, the horizontal length can actually
be reduced. The horizontal length in the present study, however, is
equal to the vertical length to simplify the FE models and to avoid
boundary truncation.

Previous researchers used different geometry sizes to develop
finite element models. For example, Tarefder and Ahmed [9] devel-
oped a 2D axisymmetric FE model with a vertical length that is
33.33 times the radius of the loading plate and a horizontal length
that is 10 times the loading plate to model FWD deflection basins.
Kim et al. [26] analyzed the effect of nonlinear behaviors of pave-
ment foundation by constructing 2D axisymmetric and 3D models
with vertical length and horizontal length that are 140 and 20
times the radius, respectively. In the present study, the FE model
was developed based the size of model geometry used by Tarefder
and Ahmed [9].

2.2.2. Layer properties

One of the important factors in finite element analysis is assign-
ing material properties to each structure of a model. Since the
material of each layer of a pavement structure have complex prop-
erties, absolute mathematical equation cannot be used to describe
these layers. Thus, most pavement response models are developed
based on layered theory and might not take into account the
heterogeneity of asphalt concrete. In fact, most models are based
on linear elastic and linear viscoelastic theories [27].

In this study, each model was developed as a multilayered elas-
tic system comprising four layers of pavement structure: asphalt
concrete as the surface layer, compacted granular material in the
base and subbase layers, and a subgrade layer of natural soil. Each
layer is modeled as a linear elastic, homogenous, isotropic material
that is characterized by the Young modulus and Poisson ratio. The
value of Young modulus for each model depends on the results of
the backcalculation of FWD test. Poisson ratio has very minimal
impact on the behavior of pavement structures [28]. Thus, the
value of Poisson ratio in this study is assumed to be 0.35 for the
surface layer, 0.4 for the base and subbase layers, and 0.45 for
the subgrade layer. The thickness and material properties of the
pavements at the three locations of the FWD test are presented
in Table 1.

The asphalt concrete layer was modeled as a viscoelastic mate-
rial. The Generalized Maxwell model shown in Fig. 3 is a mechan-
ical model for characterizing viscoelastic materials. Blab and
Harvey [29], Mulungye et al. [30], and Yan et al. [31] stated that
the Generalized Maxwell model can be used to derive relaxation
modulus in terms of Prony series and is by given by Egs. (3) and (4).

k
G(t) =G, + Y Ge /™ 3)

k=1

k
K(t) =Ko+ Kie /™ 4)

k=1

where G, and K, are equilibrium modulus, G; and K; are relaxation
modulus, and 7, is relaxation time; all values are positive and con-
stant. G, and K, is greater than O for viscoelastic solid, while for vis-
coelastic liquid both G, and K, are zero. The number of Maxwell
elements, k, is 1, 2... and 8, and the relaxation time, 7, is10%*%. G;
and K; are determined by fitting Eqs. (3) and (4) using nonlinear
least square regression [30].
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Table 1
Layer thickness and properties of elastic material.
Point Thickness (mm) Modulus of Elasticity (MPa)
AC Base Subbase AC Base Subbase Subgrade
CH 200 240 70 160 769 84 103 205
CH 1450 220 363 265 840 130 231 124
CH 2300 170 182 495 1016 71 201 122
" AC = Asphalt concrete.
? (P10). The solid line and marker points are the measured data
.......... from laboratory test and the predicted data from fitting results,
respectively. The correlation coefficient (R?) values of measured
(&3] '\t}j Ly and predicted data for each location exceeds 0.99, which indicates
ty - that the data are a good match. The Generalized Maxwell model
8 % satisfactorily describes the viscoelastic properties of asphalt con-
> S & & crete for different loading frequencies at a certain strain level.
- ~ = Thus, these predicted data was used in the ANSYS finite element
program to assign viscoelastic materials to the asphalt concrete

Fig. 3. Generalized Maxwell model.

In this study, the Simple Performance Testing (SPT) was used to
predict the viscoelastic behaviors of asphalt concrete in terms of
dynamic modulus and phase angle. The test was conducted at four
temperatures (25, 35, 45 and 50 °C) and five frequencies (0.5, 1, 5,
10, 20 and 25 Hz) under continuous sinusoidal (haversine) load by
monitoring the strain level. The results for dynamic modulus were
converted to shear modulus, G, or bulk modulus, K, by using the
Prony series analysis as required by ANSYS for viscoelastic
material.

Fig. 4 shows the viscoelastic or rheological properties of the
asphalt concrete layer for five locations along Jalan Negeri

10000

layer.

2.2.3. Meshing of the model

The accuracy of finite element model depends on the type of
meshing and element size. There are two types of elements, linear
and quadratic. Linear elements employ a first order interpolation
function while quadratic elements use a second order interpolation
function. Although linear elements give a less accurate solution
and its accuracy is very dependent on the value of the aspect ratio,
it can generate a stiffness matrix fairly quickly. Contrarily, quadra-
tic elements give a more accurate solution even when coarser
mesh is used and the result is not significantly affected by the
aspect ratio. It also takes a longer time to generate a stiffness
matrix [21].

The size of elements is determined by the value of the aspect
ratio. To ensure the accuracy of the developed model, the aspect
ratio of the mesh elements must be kept between 1 and 2. Aspect
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Fig. 4. Viscoelastic properties of AC at the Batu Maung site.
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ratio is the ratio of the longest dimension to the shortest dimen-
sion of the elements [32]. Even though the quadrilateral elements
are generated using second interpolation function, the value of the
aspect ratio of the meshed model should be examined frequently.
The distribution of aspect ratio values can be easily checked in
ANSYS by selecting an aspect ratio on the mesh metric section.

In order to perform an optimum analysis, the elements of the
region closest to the loading area must have the finest mesh in
comparison with the furthest region. Even though fine mesh
increases the number of elements, which consequently requires
large computer memory and longer computing time, it will pro-
duce more accurate results [15]. Fig. 5 shows the mesh of an FE
model. The surface, base, and subbase layers are meshed with
the smallest elements and the subgrade layer is meshed with
coarse elements.

2.2.4. Boundary condition

Assigning appropriate boundary condition to an FE pavement
models could have an important effect on the predicted pavement
response. Boundary condition can be divided into two categories,
essential and natural boundary conditions. In practice, essential
boundary condition is usually applied in structural analysis
problems. One example of an essential boundary condition is sup-
port, which is used to restrain the movement of rigid bodies.
Regardless of the loading condition, supports such as roller, fixed,
hinge, etc. should be assigned to an FE model to prevent infinite
displacement.

Several researchers have applied such boundary conditions in
their works. For instance, Kim et al. [26] built an axisymmetric
model by using roller vertical boundary node and fixed supports
for the bottom boundary node. Helwany et al. [33] used DACSAR
to develop an axisymmetric model by restraining the bottom
subbase layer from any vertical movement, and was able to
demonstrate the rigidity of the subgrade layer. Saad et al. [34]
developed a 3D FE model assigned with roller supports at all four
vertical boundaries and fixed support at the bottom of the model.

In the present study, roller supports are assigned to the vertical
left and right of each model to restrain horizontal movement and
only allow vertical movement (Fig. 2). The bottom subgrade layer
is assigned fixed support and horizontal and vertical movements
are not allowed. The connection between two adjacent layers is

Fig. 5. Mesh of an FE model.

FWD Time-Load History
60

— Dynamic Load
- - Static Load

Load (kN)

Time (milliseconds)

Fig. 6. Load pattern of an FWD test.

assumed to be fully bonded with no gap. Slip is not allowed
between two connected layers.

2.2.5. Loading condition

In an attempt to improve the accuracy of the predicted pave-
ment response, the FE model was used to simulate field loading
condition. The FWD load has a half sine waveform and is also
known as dynamic load. Based on the actual field test and pave-
ment evaluation report for this site, an impulse load with a peak
magnitude of 50kN was imposed on a 300 mm diameter loading
plate for approximately 25 ms. A pressure of 700 kPa was assigned
to the loading area of the developed FE model. Fig. 6 shows the
time-load history of FWD where the dynamic peak load of 50kN
is assumed to be attained at 12.5 ms. For a static load, a magnitude
load of 50KkN is assumed to be constant during the FWD test.

3. Results and discussion

This paper reviews two methods of analysis, namely static
structural and transient dynamic analyses, and compares the two
methods. The Workbench Help in ANSYS recommends that static
analysis should be performed first to facilitate understanding of
the effect of nonlinear and dynamic problem on structural
response. Results of peak vertical deflections (predicted data) for
all sensors were compared with the measured deflection basin of
an FWD test (measured data) and the accuracy of the developed
model was evaluated by computing the RMSE of both data.

3.1. First stage of model development

In first stage, the FE model was developed using 5000 mm x
5000 mm model geometry in the vertical and horizontal directions.
The vertical and horizontal boundaries have a length that is 33.33
times the radius of a loading plate of an FWD test [9]. Each layer is
assumed to be a linear elastic, isotropic homogenous material. Vis-
coelastic properties were also assigned to the asphalt concrete
layer. The mesh model comprises 50 mm fine element and 80
mm coarse element. The FE models were meshed using a four-
node quadrilateral element (CAX4) with a quadratic interpolation
function. Static and dynamic loads were imposed on the FE model
and boundary conditions were set as described earlier.

3.1.1. Deflection basin
Fig. 7 shows the difference in the deflection basins obtained
through from field measurement and both FE analyses for the
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Fig. 7. Deflection basin for dynamic and static methods of analysis.
three locations of the FWD test. The deflection is maximum at

0mm and diminished with increasing distance. The deflection
value for each sensor obtained through the static structural

analysis is similar for both static and dynamic loads. The
deflection basins produced by the transient dynamic analysis
are very similar for both static and dynamic loading condi-
tions, and is a close approximation of the measured deflection
basin. The percentage of RMSE was calculated to determine the
approximation of deflection basins to the measured deflection
basin.

Fig. 7(a) shows that the deflection basin for transient dynamic
analysis under a dynamic load of CH 200 is a very close approxima-
tion of the measured deflection basin with an RMSE of only 0.94%.
Other deflection basins in Fig. 7(a) show a very good correlation
with the measured deflection basin with the percentages of RMSE
of 2.41% for transient dynamic analysis under static loading, and
2.45% for static structural analysis under both static and dynamic
loading.

Nevertheless, the deflection basin produced by the transient
dynamic analysis under static loading gives the closest approxi-
mation to the measured deflection basin with an RMSE of 4.21%
and 1.20% for CH 1450 and CH 2300, respectively, when com-
pared with the measured deflection basin shown in Fig. 7(b)
and (c). The same analysis for dynamic load produced deflection
basins with RMSE of 5.01% and 1.58% for CH 1450 and CH 2300,
respectively. It can be seen that the deflection basins produced
by static structural analysis for both loading conditions
have the least similarity with the measured deflection basin
with RMSE of 8.10% and 4.36% for CH 1450 and CH 2300,
respectively.

The results of the analyses show that transient dynamic analy-
sis was able to produce a good FE model of flexible pavement
structures with smaller RMSE in comparison to other static struc-
tural analysis methods. Even though static loading gives a more
accurate result for vertical deflection, dynamic loading for
transient dynamic analysis could also be utilized to determine
deflection basin since the difference in RMSE between the two con-
ditions is small.

3.1.2. Time-deflection history

Fig. 8 shows the time-deflection history for each FE analysis;
the green and blue lines represent the time-deflection history for
static structural analyses under static and dynamic load, respec-
tively, while the red and purple lines represent time-deflection
history for a transient dynamic analyses of static and dynamic
load, respectively. Fig. 8(a)-(c) show the time-deflection histories
for the three sensors that were positioned 0 mm, 300 mm and
600 mm from the center of the loading plate. The lines in the
graphs of static structural analyses for static and dynamic load-
ing show the same pattern as the assigned load, as can be seen
in Fig. 6. The trends for CH 200, CH 1450, and CH 2300 are sim-
ilar since static structural analysis only takes into account
steady-state loading while ignoring inertia and damping effects.
It should be noted that, for a static structural analysis under
dynamic loading condition, maximum deflection occurred at
12.5 ms under all conditions.

On the contrary, the graphs of transient dynamic analyses for
both static and dynamic loading conditions show a different trend
from those of the static structural analysis of FWD. The result of
transient dynamic analysis under static loading condition shows
that vertical deflection increased with time until peak deflection
occurs, after which it remained constant until the end of the
FWD test. The graphs for transient dynamic analysis under
dynamic loading condition are similar to those for static structural
analysis for dynamic loading condition even though the maximum
deflections of all sensors did not occur at 12.5 ms. For instance,
maximum deflection occurred at 13.8 ms at the radial offset 0
mm for all three location of FWD test. Maximum deflections for
the 300 mm and 600 mm radial offset occurred at 15.0 ms and
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Fig. 8. Time-deflection history.

16.3 ms, respectively. This shows that there is a very small time lag 3.1.3. Contour plot of vertical deflection

in the occurrence of peak deflection. This is because transient Fig. 9 shows the contour plots of vertical deflection for explicit
dynamic analysis takes into account significant inertia and damp- dynamic analysis under dynamic load for CH 200 at 12.5 ms and
ing effects. static load for CH 1450 and CH 2300 at the end time. The contour
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Fig. 9. Contour plot of vertical deflection.

was plotted to observe the distribution of vertical deflection
throughout the model. The different colors represent deflec-
tion values. The color changes from blue to red and shows that ver-
tical deflection decreases and approaches minimum in the red
region. Maximum deflection occurred in the corner of the model
where load was applied and deflection decreased with distance

Table 2
Comparison of CPU Time, Number of Nodes and Elements, and Percentage of RMSE.

from the loading region. A further comparison was done by
increasing the size of model geometry to determine whether the
5000 mm x 5000 mm model geometry is adequate without com-
promising the accuracy of the developed FE models.

3.2. Second stage of model development

In second stage, the FE models were developed by using the
method which was determined to be better in first stage of
analysis. The size of model geometry was increased to
10000 mm x 10000 mm to observe if it could improve the accu-
racy of the FE model. The material properties of each layer and
the boundary conditions remain unchanged. The size of element
was reduced, namely 40 mm for finer elements and 60 mm for
coarse elements, by increasing the higher order element to an
eight-node quadrilateral element (CAX8) with quadratic interpo-
lation function.

Table 2 shows the time taken by the Central Processing Unit
(CPU) to analyze the FE model, the number of nodes and elements,
and the RMSE percentage when comparing the FE model with the
field measurements. The table shows that the time required to ana-
lyze the data for 5000 x 5000 mm and 10,000 x 10000 mm model
geometries are between 48 and 75s and 71-108 s, respectively.
Analysis of the axisymmetric FE model was completed fairly
quickly since it involves a simple model; the short duration for
the analysis is also due to the RAM of the computer. Table 2 also
shows that CPU time increased very slightly when the size of the
model geometry and the number of nodes and elements were
increased.

The percentage of RMSE between the vertical deflections for the
FE model and field measurement increased by 0.25% and 0.01%,
respectively, as the size of geometry of CH 200 and CH 2300 was
increased. Contrarily, the percentage of RMSE decreases by only
0.1% for CH 1450 when the size of model geometry was increased.
Increasing the size of model geometry, assigning viscoelastic prop-
erties to asphalt concrete material, and using the higher order of
elements and finest elements did not have any significant effect
on the accuracy of the FE model.

4. Conclusion

The results of the comparison of both methods show that tran-
sient dynamic analysis is the better method for modelling flexible
FE pavement structures for FWD testing under both static and
dynamic loading conditions since RMSE ranges only between
0.94% and 5.01%. The percentage of RMSE for FE models and field
measurements for a static structural analysis is slightly higher,
namely between 2.45% and 8.10%. Hence, it can be concluded that
5000 x 5000 mm model geometry is sufficient for developing an FE
model for flexible pavement structure used in an FWD test. The
appropriate material properties for each layer, the type and size
of elements, and boundary and loading conditions should be care-
fully determined when developing an FE model.

Point 5000 x 5000 mm 10,000 x 10000 mm
CPU Time (s) Number of Nodes & Elements Percentage of RMSE (%) CPU Time (s) Number of Nodes & Elements Percentage of RMSE (%)
CH 200 70 9144 & 8946 0.94 121 129608 & 42921 1.19
CH 1450 75 9398 & 9198 421 108 133383 & 44176 411
CH 2300 56 7272 & 7100 1.20 99 81069 & 26800 1.21
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