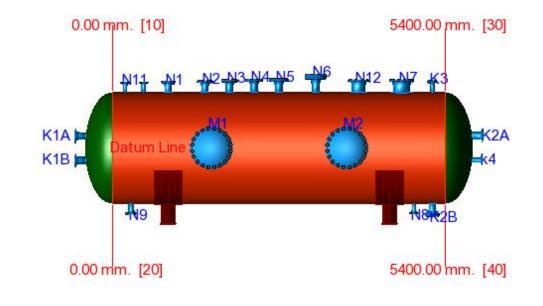

		Da	ata Sh	eet for Unfired	Pressu	ire Vess	els		
Equ	ipmentName:	Clos	ed Drain [Drum		Location:	Ara	bian Gulf	
Tag	No.: 603-39V-01					Plant Location	on:	PS-3K	
No.c	ofUnits: 1					Manufacture	er/Mode	l:	
		IN DATA							
	Orientation			Horizontal				MATERIAL	
******	Contents			HC, H_2S , CO_2 and H_2O	Shell	Part		Material Specif	
	Criticality Rating Service			3 Lethal		ining of shell		SA516Gr.60 (r See note 5	
	Design Code			ASME Sec. VIII DIV.1	Heads			SA516Gr.60 (I	note 5)
	Code Stamp			Yes		ining of heads		See note 5	1010 0)
7		******************			Boot		*****	-	
8	Temperature				Reinforcing	g pads		SA516Gr.60	
9	Design -	Upper/Low e		<u>168/-29 /1</u>		orcing Nozzles		-	
10		Max. / Norma	al/Mir°C	-/45/-		ck (pipes) abov		SA106Gr.B (n	
	Pressure			0.5		k 3"NB and be		SB444Gr.1 UN	
12 13	Design (Interna Design Externa		barg barg	3.5		nges above 3' nges 3"NB and	*****	SA105 (note 5 SB564Gr.1 UN	
13	Operating - Ma		barg	- -/0.5/-	Demister	nges 3 ND and	DEIOW	-	13 1100023
	Corrosion Allow an		mm	3 on Carbon Steel	Baffles			-	
	Specific Gravity Li			Refer sheet 2 of 3	Distributor	pipes		-	************************************
		·	m³	15	Base ring/			-	
	Vessel Dia (ID)		mm	1800	Vortex Bre			SA516Gr.60 (ı	note 5)
	Vessel Length (T/L		mm	5400	Anode pro			-	
	Shop Hydrotest Pro	essure (N&C)	Per code		/eir pl./support	ribs)	SA516Gr.60/A	283Gr.C
	Wind		1	BS CP3, Chapter V, PART				-	
	Design Wind Speed Seismic	1	m/s	45 See note 7	External at External	Bolts		SA 283 Gr C SA 193 Gr B7	(note 2)
		OM)	mm	5+3 VTC (note 5)	Lixterfial	Nuts		SA 193 Gr B7 SA 194 Gr 2H	
~~~~~	Min.Head Thicknes	********	mm	5+3 VTC (note 5)	Gaskets E			Spiral Wound (	
	SkirtThickness/Hei		mm	-	Gaskets In				
27	Weld Joint Efficien	cies:			Internal	Bolts			
28	Shell			1.0		Nuts			
29	Head			1.0	ļ				
	Inspection and Tes			V	Turner (11)		NSTRU		
~~~~~	Third Party Inspect	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Yes	Type of He	~~~~~	******	2:1 Ellipsoidal	
32 33	Non Destructive Te Radiograph			100%	Type of su Platform/La	pport adder/Pipe Clip		Saddle Required	
33 34	Ultrasonic	<u>.</u>		Per Code/Spec	Insulation s			Not Required	
35	Magnetic Pa	rticle		100 %	Manw ay D			Required	
36	Dye Penetra			yes	Earthing Bo	*****		Required	
37	Post Weld Heat Tre			yes		s/Eyes/Trunior		Required	
	Material Impact Tes			Per Code / Spec	Name plate			Required, SS3	16
	Certified Elevated	emp.Test Re		No	-			NEIGHTS	~
	Insulation		mm	No	Empty	Kg		3,800 VT	С
	Fireproofing Painting	(Extornel)	mm	No ES-0-12 (noto 6)	Shipping	Kg		VTA 13 700 V	TC
~~~~~	Painting Painting	(External) (Internal)		ES-Q-12 (note 6) No	Operating Field Test	Kg Kg		13,700 V 19,200 V	
-10		(internal)				ку	I	13,200 V	
44			spiral w c	ound graphite filled with Inc	-	ernal and exte	rnal ring	s. Gaskets sha	all be as per A
	1. Gaskets shall be	Inconel 625							
45	1. Gaskets shall be 2. External bolting		lip galvan	ised as per BS 729 (BS EN	I ISO 1461:1	999).			
45 46	2. External bolting	shall be hot c		minimum and vendor to co					
45 46 47 48	<ol> <li>External bolting :</li> <li>Indicated thickn</li> <li>Inside diameter of</li> </ol>	shall be hot c ess of shell, of 20"NB mar	head are nw ay sha	minimum and vendor to co Il be 457 mm.	nfirm the thi	cknesses.			
45 46 47 48 49	<ol> <li>External bolting s</li> <li>Indicated thickn</li> <li>Inside diameter of</li> <li>All internal surface</li> </ol>	shall be hot c ess of shell, of 20"NB mar ces of the v	head are nw ay sha essel, noz	minimum and vendor to co Il be 457 mm. zzle sizes above 3" NB incl	nfirm the thi luding gaske	cknesses. et faces shall t			
45 46 47 48 49 50	<ol> <li>External bolting :</li> <li>Indicated thickn</li> <li>Inside diameter of</li> <li>All internal surfa</li> <li>mm thick Incom</li> </ol>	shall be hot c ess of shell, of 20"NB mar ces of the v el 625 befor	head are nw ay sha essel, noz e PWHT. I	minimum and vendor to co Il be 457 mm. zzle sizes above 3" NB incl ron content in Inconel 625	nfirm the thi luding gaske	cknesses. et faces shall t			
45 46 47 48 49 50 51	<ol> <li>External bolting s</li> <li>Indicated thickn</li> <li>Inside diameter of</li> <li>All internal surfa</li> <li>mm thick Incom weld deposition</li> </ol>	shall be hot c ess of shell, of 20"NB mar ces of the v el 625 befor can be cons	head are nw ay sha essel, noz e PWHT. I idered du	minimum and vendor to co ill be 457 mm. zzle sizes above 3" NB incl ron content in Inconel 625 rring detailed design.	nfirm the thi luding gaske	cknesses. et faces shall t			
45 46 47 48 49 50 51 52	<ol> <li>External bolting s</li> <li>Indicated thickn</li> <li>Inside diameter of</li> <li>All internal surfa</li> <li>mm thick Incomweld deposition</li> <li>System 5 for eq</li> </ol>	shall be hot c ess of shell, of 20"NB mar ces of the v el 625 befor can be cons uipment in sp	head are nw ay sha essel, noz e PWHT. I idered du plash zone	minimum and vendor to co ill be 457 mm. zzle sizes above 3" NB incl ron content in Inconel 625 rring detailed design. e to be used.	nfirm the thi luding gaske	cknesses. et faces shall t			
45 46 47 48 49 50 51 52 53	<ol> <li>External bolting s</li> <li>Indicated thickn</li> <li>Inside diameter of</li> <li>All internal surfa</li> <li>mm thick Incom weld deposition</li> </ol>	shall be hot c ess of shell, of 20"NB mar ces of the v el 625 befor can be cons uipment in sp ental data:15	head are nw ay sha essel, noz e PWHT. I idered du plash zone 35-0-56-0	minimum and vendor to co III be 457 mm. zzle sizes above 3" NB incl ron content in Inconel 625 rring detailed design. e to be used. 1001.	nfirm the thi luding gaske	cknesses. et faces shall t			
45 46 47 48 49 50 51 52 53 54 55	<ol> <li>External bolting</li> <li>Indicated thickn</li> <li>Inside diameter of</li> <li>All internal surfa</li> <li>mm thick lncor</li> <li>weld deposition</li> <li>System 5 for eq</li> <li>Refer Environme</li> </ol>	shall be hot c ess of shell, of 20"NB mar ces of the v el 625 befor can be cons uipment in sp ental data:15	head are nw ay sha essel, noz e PWHT. I idered du plash zone 35-0-56-0	minimum and vendor to co III be 457 mm. zzle sizes above 3" NB incl ron content in Inconel 625 rring detailed design. e to be used. 1001.	nfirm the thi luding gaske	cknesses. et faces shall t			
45 46 47 48 49 50 51 52 53 54 55	<ol> <li>External bolting</li> <li>Indicated thickn</li> <li>Inside diameter of</li> <li>All internal surfa</li> <li>mm thick lncor</li> <li>weld deposition</li> <li>System 5 for eq</li> <li>Refer Environme</li> </ol>	shall be hot c ess of shell, of 20"NB mar ces of the v el 625 befor can be cons uipment in sp ental data:15	head are nw ay sha essel, noz e PWHT. I idered du plash zone 35-0-56-0	minimum and vendor to co III be 457 mm. zzle sizes above 3" NB incl ron content in Inconel 625 rring detailed design. e to be used. 1001.	nfirm the thi luding gaske	cknesses. et faces shall t			
45 46 47 48 49 50 51 52 53 54 55 55 56	<ol> <li>External bolting</li> <li>Indicated thickn</li> <li>Inside diameter of</li> <li>All internal surfa</li> <li>mm thick lncor</li> <li>weld deposition</li> <li>System 5 for eq</li> <li>Refer Environmed</li> <li>VTC: Vendor to co</li> </ol>	shall be hot c ess of shell, of 20"NB mar ces of the v el 625 befor can be cons uipment in sp intal data:150 nfirm, VTA: 1	head are hw ay sha essel, noz e PWHT. I idered du blash zone 35-0-56-0 Vendor to	minimum and vendor to co III be 457 mm. zzle sizes above 3" NB incl ron content in Inconel 625 rring detailed design. e to be used. 1001.	nfirm the thi luding gaske w eld depos	cknesses. et faces shall t ition shall not t		han 7 % . Alte	
45 46 47 48 49 50 51 52 53 54 55 56 1	2. External bolting 3. Indicated thickn 4. Inside diameter of 5. All internal surfa 3 mm thick Incom w eld deposition 6. System 5 for eq 7. Refer Environme VTC: Vendor to co 29-Jul-01	shall be hot c ess of shell, of 20"NB mar ces of the vi el 625 befor can be cons uipment in sp ental data:153 nfirm, VTA: 1 APPROVED	head are nw ay sha essel, noz e PWHT. I idered du plash zone 35-0-56-0 Vendor to FOR DET.	minimum and vendor to co III be 457 mm. zzle sizes above 3" NB incl iron content in Inconel 625 i rring detailed design. a to be used. 1001. advise.	nfirm the thi luding gaske w eld depos	cknesses. et faces shall b ition shall not b	GMP	han 7 % . Alte	
45 46 47 48 49 50 51 52 53 54 55 56 1 0	2. External bolting 3. Indicated thickn 4. Inside diameter of 5. All internal surfa 3 mm thick Incom weld deposition 6. System 5 for eq 7. Refer Environme VTC: Vendor to co 29-Jul-01 24-06-2001	shall be hot c ess of shell, of 20"NB mar ces of the v el 625 befor can be cons uipment in sp intal data:150 nfirm, VTA: 1	head are way sha essel, noz e PWHT. I idered du plash zone 35-0-56-0 Vendor to FOR DET.	minimum and vendor to co III be 457 mm. zzle sizes above 3" NB incl iron content in Inconel 625 or ring detailed design. e to be used. 1001. e advise.	nfirm the thi luding gaske w eld depos	cknesses. et faces shall b ition shall not b GMP GMP	GMP CPS	han 7 % . Alte	rnatively Mone
45 46 47 48 49 50 51 52 53 55 55 56 1	2. External bolting 3. Indicated thickn 4. Inside diameter of 5. All internal surfa 3 mm thick Incom weld deposition 6. System 5 for eq 7. Refer Environme VTC: Vendor to co 29-Jul-01 24-06-2001	shall be hot c ess of shell, of 20"NB mar ces of the vi el 625 befor can be cons uipment in sp ental data:153 nfirm, VTA: 1 APPROVED	head are way sha essel, noz e PWHT. I idered du plash zone 35-0-56-0 Vendor to FOR DET.	minimum and vendor to co III be 457 mm. zzle sizes above 3" NB incl iron content in Inconel 625 i rring detailed design. a to be used. 1001. advise.	nfirm the thi luding gaske w eld depos	cknesses. et faces shall b ition shall not b GMP GMP G CHKD	GMP CPS APPRD	han 7 % . Alte	
45 46 47 48 49 50 51 52 53 54 55 56 1 0	2. External bolting 3. Indicated thickn 4. Inside diameter of 5. All internal surfa 3 mm thick Incom weld deposition 6. System 5 for eq 7. Refer Environme VTC: Vendor to co 29-Jul-01 24-06-2001	shall be hot c ess of shell, of 20"NB mar ces of the vi el 625 befor can be cons uipment in sp ental data:153 nfirm, VTA: 1 APPROVED	head are way sha essel, noz e PWHT. I idered du plash zone 35-0-56-0 Vendor to FOR DET.	minimum and vendor to co III be 457 mm. zzle sizes above 3" NB incl iron content in Inconel 625 or ring detailed design. e to be used. 1001. e advise.	NVR	cknesses. et faces shall b ition shall not b GMP GMP GMP GMP GMP GMP GMP GMP GMP GMP	GMP CPS APPRD CPS	IDB IDB PROJECT troleum	CLIENT APP
45 46 47 48 49 50 51 52 53 54 55 56 1 0	2. External bolting : 3. Indicated thickn 4. Inside diameter of 5. All internal surfa 3 mm thick Incom weld deposition 6. System 5 for eq 7. Refer Environme VTC: Vendor to co 29-Jul-01 24-06-2001 V DATE	shall be hot c ess of shell, of 20'NB mar ces of the vi el 625 befor can be cons uipment in sp intal data:15: nfirm, VTA: 1 APPROVED ISSUED FOR	head are way sha essel, noz e PWHT. I idered du plash zone 35-0-56-0 Vendor to FOR DET.	minimum and vendor to co III be 457 mm. zzle sizes above 3" NB incl iron content in Inconel 625 or ring detailed design. e to be used. 1001. e advise.	NVR NVR NVR NVR NVR NVR	cknesses. et faces shall b ition shall not b GMP GMP GMP GMP GMP GMP GMP GMP GMP GMP	GMP CPS APPRD Car Pe ab "C"	han 7 % . Alte	CLIENT APP
45 46 47 48 49 50 51 52 53 54 55 56 1 0	2. External bolting 3. Indicated thickn 4. Inside diameter of 5. All internal surfa 3 mm thick Incom weld deposition 6. System 5 for eq 7. Refer Environme VTC: Vendor to co 29-Jul-01 24-06-2001	shall be hot c ess of shell, of 20'NB mar ces of the vi el 625 befor can be cons uipment in sp intal data:15: nfirm, VTA: 1 APPROVED ISSUED FOR	head are way sha essel, noz e PWHT. I idered du plash zone 35-0-56-0 Vendor to FOR DET.	minimum and vendor to co III be 457 mm. zzle sizes above 3" NB incl iron content in Inconel 625 or ring detailed design. e to be used. 1001. e advise.	NVR	cknesses. et faces shall b ition shall not b GMP GMP GMP GMP GMP GMP GMP GMP	GMP CPS APPRD ab "C" 0705	IDB IDB PROJECT troleum	CLIENT APP


### LAMPIRAN

			D	ata S	Sheet	foi	[.] Unfire	ed Pr	essu	ıre Ve	ssel				
Equ	ipm ent Na	me:	Closed	Drain D	rum			Locati	on:	Ara	abian Gulf				
	No.: 603								ocatio		-3K				
	of Units :	1								/Model:	-				
1							DESIG	N DAT	A						
2							PROCES	SS DA	ТА						
3	Fluid Name	;					Conden	sate							
4	Case														
5	Vapour Flo		о.		Act m		-								
	Vapour De Vapour Vis				кg	/m3 cP	-								
	Vapour Mo						-								
9	Liquid HC F	~~~~~			Act m	3/h	3.9								
10	Liquid HC [	Density @	Oper.	T/P	kg	/m3	725								
11	Liquid HC \			. T/P		сP	}								
12	Liquid HC S		~~~~~		dyne	~~~~~	21.2	2							
13	Slug Holdir Water Flow		/oiume		Act m	m3 3/h	0								
15	Water Den	~~~~~	per. T/P			/m3	-							~~~~~	
	Water Visc					cP	-								
17	Design Ma	rgin on Flo	ow Rate	~~~~~		%	-								
18	Corrosive						$H_2S$ , $CO_2$ a	ind H ₂ O							
19	VESSEL IN														
20     Gas Demister/Vane Pack       21     Vortex Breakers															
22	VOILOX DIC	Jakoro					NOZZLE	SCHED	ULE						
23	Mark No	Size	Qty.	Flange				vice	-	Stando	ut (mm)	Rei	nf Pa	d (mm)	
24		NPS	Nos.		Type/Face	(maria and a state of the state				Ext	Int	Thick		Diam	
25	N1	4" 4"	1	150#	WN/RF	}	id Inlet (150		······································						
26 27	N2 N3	4" 4"	1	300# 600#	WN/RF WN/RF	(	id Inlet (300 id Inlet (600					+			
28	N4	4"	1	900#	WN/RF	zun	id Inlet (900								
29	N5	4"	1	1500#	WN/RF	(mara a second s	id Inlet (150	~~~~~	******	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-		
30	N6	4"	1	2500#	WN/RF	Flu	id Inlet (250	# heade	er)						
31	N7	10"	1	150#	WN/RF	f	pour Outlet		~~~~~	<u> </u>					
32 33	N8 N9	2" 3"	1	150# 150#	WN/RF WN/RF	Liq Dra	uid Outlet to	Pumps							
34	N10	2"	1	150#	WN/RF	}	id inlet from	Open d	Irains			1			
35	N11	2"	1	150#	<b>WN/RF</b>	900000000	id inlet from					1			
36	N12	8"	1	150#	WN/RF	LP	Flare heade	er inlet				_			
37 38	K1 A/B	4"	2	150#	WN/RF		vel Bridle Co	ndonoo	to						
39	KT A/B K2 A/B	4"	2	150#	WN/RF	ţ	vel Bridle Co					-			
40	K3	2"	1	150#	WN/RF	}	ssure Indic								
41	K4	2"	1	150#	WN/RF	Ter	mperature lr	ndicator							
42	N 44	0.01	4	450%											
43	M1 M2	20" 20"	1	150# 150#	WN/RF	francis	nw ay nw ay	/	$\wedge$						
45			<u> </u>				inv ay		┷──┤						
46															
47															
48 49	1 Nozzla (	nizos and	olovatio	ne choll	ho confirm	od .	during detai	MENTS							
49 50		sizes and	elevatio	ins shall	De comm	ieu (	uning detai	ieu engi	neering.	•					
51															
52															
53															
54 55															
56														***************	
57															
58															
59															
55										0	tor De	tralau	~		
	10000							$\left( \right)$			atar Pe			_	
		Wor	ley			لترول	قطرلاب	$\overrightarrow{\sim}$		Il Hanine			Rec		
▏▙						Qata	r Petroleum	~~	Projec	nent No:	022/007 00705-N		198		ev: 1

00705-MEC-DTS-198R1.XLS



00705-MEC-DTS-198R1.XLS



Y X

# **Tebal Dinding Shell & Head**

Ukuran Tebal Dinding Shell & Head Standar :

- 1/4 = 0,25	- 7/8 = 0,875	- 1-1/2 = 1,5
- 5/16 = 0,3125	- 15/16 = 0,9375	- 1-9/16 = 1,5625
- 3/8 = 0,375	- 1 = 1,0	- 1-5/8 = 1,625
- 7/16 = 0,4375	- 1-1/16 = 1,0625	- 1-11/16 = 0,6875
- 1/2 = 0,5	- 1-1/8 = 1,125	- 1-3/4 = 1,75
- 9/16 = 0,5625	- 1-3/16 = 1,1875	- 1-13/16 = 1,8125
- 5/8 = 0,625	- 1-1/4 = 1,25	- 1-7/8 = 1,875
- 11/16 = 0,6875	- 1-5/16 = 1,3125	- 1-15/16 = 1,9375
- 3/4 = 0,75	- 1-3/8 = 1,375	- 2 = 2,0
- 13/16 = 0,8125	- 1-7/16 = 1,4375	- 2-1/4 = 2,25

Satuan : inch

(hlm: 374)

From  	То	Int. Press + Liq. Hd psig	Nominal Thickness in.	Total Corr Allowance in.	Element   Diameter   in.	Allowable Stress(SE) psi
10	20	50.7644	0.11811	0.11811	70.8661	17100.0
20	30	50.7644	0.11811	0.11811	70.8661	17100.0
30	40	50.7644	0.11811	0.11811	70.8661	17100.0
Element	: Requ	ired Thickness a	and MAWP :			
	-	Design	M.A.W.P.	M.A.P.	Minimum	Required
						. –

```
From | To |
               Pressure | Corroded | New & Cold | Thickness | Thickness
                                            psig
                                                                        in.
                psig
                              psig
                                                          in.
                                                    _____
                50.7644
                            63.2976 | 120.565 |
                                                         0.25000
    10 20
                                                                       0.22322
                              63.2976
    20 30
                50.7644
                                            120.141
                                                          0.25000
                                                                       0.22384
                              63.2976 | 120.565 |
    30
        40
                50.7644
                                                         0.25000
                                                                      0.22322
   Minimum
                              63.298
                                           120.140
MAWP: 50.836 psig, limited by: Nozzle Reinforcement.
Internal Pressure Calculation Results :
ASME Code, Section VIII, Division 1, 2015
Elliptical Head From 10 To 20 SA-516 60 , UCS-66 Crv. C at 334 °F
Material UNS Number: K02100
Required Thickness due to Internal Pressure [tr]:
  = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c)
  = (50.764*71.1024*0.996) / (2*17100.00*1.00-0.2*50.764)
  = 0.1051 + 0.1181 = 0.2232 in.
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
  = (2*S*E*t)/(Kcor*D+0.2*t) per Appendix 1-4 (c)
  = (2*17100.00*1.00*0.1319) / (0.996*71.1024+0.2*0.1319)
  = 63.696 psig
Cylindrical Shell From 20 To 30 SA-516 60 , UCS-66 Crv. C at 334 °F
Material UNS Number: K02100
Required Thickness due to Internal Pressure [tr]:
  = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
  = (50.764*35.5512)/(17100.00*1.00-0.6*50.764)
  = 0.1057 + 0.1181 = 0.2238 in.
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
  = (S*E*t)/(R+0.6*t) per UG-27 (c)(1)
  = (17100.00*1.00*0.1319) / (35.5512+0.6*0.1319)
  = 63.298 psig
Elliptical Head From 30 To 40 SA-516 60 , UCS-66 Crv. C at 334 °F
Material UNS Number: K02100
Required Thickness due to Internal Pressure [tr]:
  = (P*D*Kcor) / (2*S*E-0.2*P) Appendix 1-4(c)
  = (50.764*71.1024*0.996) / (2*17100.00*1.00-0.2*50.764)
  = 0.1051 + 0.1181 = 0.2232 in.
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
  = (2*S*E*t)/(Kcor*D+0.2*t) per Appendix 1-4 (c)
  = (2*17100.00*1.00*0.1319) / (0.996*71.1024+0.2*0.1319)
  = 63.696 psig
Hydrostatic Test Pressure Results:
                                                            66.087 psig
 Pressure per UG99b
                        = 1.3 * M.A.W.P. * Sa/S
 Pressure per UG99b[36] = 1.3 * Design Pres * Sa/S
                                                            65.994
                                                                    psig
                                                           153.624 psig
 Pressure per UG99c
                        = 1.3 * M.A.P. - Head(Hyd)
                                                           55.920 psig
 Pressure per UG100
                        = 1.1 * M.A.W.P. * Sa/S
 Pressure per PED
                        = 1.43 * MAWP
                                                           72.696 psig
 Pressure per App 27-4 = 1.3 * M.A.W.P. * Sa/S
                                                           66.087 psig
UG-99(b), Test Pressure Calculation:
  = Test Factor * MAWP * Stress Ratio
  = 1.3 * 50.836 * 1.000
```

```
= 66.087 psig
```

#### Nozzle Flange MAWP Results : Nozzle Flange Rating

Nozzle	Flan	ge Rating				
	Operating	Ambient	Temperature	Class		
Grade/Group	psig		°F			
_						
K1A 1.1	219.7	285.0	334	150		GR
K1B 1.1	219.7	285.0	334	150		GR
N1 1.1	219.7	285.0	334	150		GR
N2 1.1	648.1	740.0	334	300		GR
N3 1.1	1294.5	1480.0	334	600		GR
N4 1.1	1942.7	2220.0	334	900		GR
N5 1.1	3235.6	3705.0	334	1500		GR
N6 1.1	5391.6	6170.0	334	2500		GR
N7 1.1	219.7	285.0	334	150		GR
N8 1.1	219.7	285.0	334	150		GR
N9 GR 1.1	219.7	285.0	33	4	150	
N10 1.1	219.7	285.0	334	150		GR
N11 1.1	219.7	285.0	334	150		GR
N12 1.1	219.7	285.0	334	150		GR
K3 1.1	219.7	285.0	334	150		GR
K2B 1.1	219.7	285.0	334	150		GR
M1 1.1	219.7	285.0	334	150		GR
M2 1.1	219.7	285.0	334	150		GR
K2A 1.1	219.7	285.0	334	150		GR
k4 1.1	219.7	285.0	334	150		GR
Minimum Rating		285.000	psig	(Ior Core	Elements)	
AREA AVAILABLE	, A1 to A5	Des	sign  Externa	1  Maj	pnc	
Area Required Area in Shell				NA   NA	NA   NA	
Area in Nozzle				NA	NA	
Area in Inwar				NA	NA	
Area in Welds				AN	NA	
Area in Eleme	nt	A5   (	).114   I	NA	NA	

```
TOTAL AREA AVAILABLE Atot 0.437
                                                   NA
                                                                 NA
Area Required [A]:
  = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)
  = (4.2643*0.0947*1.0+2*0.1189*0.0947*1.0*(1-1.00))
  = 0.404 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
  = d(E1*t - F*tr) - 2 * tn(E1*t - F*tr) * (1 - fr1)
  = 4.264 ( 1.00 * 0.1319 - 1.0 * 0.095 ) - 2 * 0.119
    (1.00 * 0.1319 - 1.0 * 0.0947) * (1 - 1.000)
  = 0.159 \text{ in}^2
Area Available in Nozzle Wall Projecting Outward [A2]:
  = (2 * Tlwp) * (tn - trn) * fr2/sin(alpha3)
  = (2 * 0.330) * (0.1189 - 0.0063) * 1.0000/sin(85.3)
  = 0.075 in^{2}
Area Available in Welds [A41 + A42 + A43]:
  = (Wo<sup>2</sup> - Ar Lost) *Fr3+((Wi-can/0.707)<sup>2</sup> - Ar Lost) *fr2 + Wp<sup>2</sup>*fr4
  = (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00
  = 0.090 \text{ in}^2
Area Available in Element [A5]:
 = (min(Dp,DL) - (Nozzle OD)) * (min(tp,Tlwp,te)) * fr4
  = ( 5.1477 - 4.5036 ) * 0.2362 * 1.0000
  = 0.114 \text{ in}^2
NOZZLE K1B
AREA AVAILABLE, A1 to A5 | Design| External | Mapnc |
 -----
                   Ar | 0.404
Al | 0.159
Area Required
                                                     NA
                                                                 NA
Area in Shell
                                                   NA
                                                                 NΑ
Area in Nozzle WallA2Area in Inward NozzleA3
                                    0.075
                                                   NA
                                                                NA
                                    0.000
                                                   NA
                                                                 NA
Area in Welds A41+A42+A43
                                                    NA
                                    0.090
                                                                NA
Area in Element A5
                                    0.114
                                                    NA
                                                                 NΑ
TOTAL AREA AVAILABLE Atot
                                    0.437
                                                    NA
                                                                NA
Area Required [A]:
 = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)
  = (4.2643*0.0947*1.0+2*0.1189*0.0947*1.0*(1-1.00))
  = 0.404 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
  = d(E1*t - F*tr) - 2 * tn(E1*t - F*tr) * (1 - fr1)
  = 4.264 ( 1.00 * 0.1319 - 1.0 * 0.095 ) - 2 * 0.119
    (1.00 * 0.1319 - 1.0 * 0.0947) * (1 - 1.000)
  = 0.159 \text{ in}^2
Area Available in Nozzle Wall Projecting Outward [A2]:
 = ( 2 * Tlwp ) * ( tn - trn ) * fr2/sin( alpha3 )
  = (2 * 0.330) * (0.1189 - 0.0063) * 1.0000/sin(85.3)
  = 0.075 \text{ in}^2
Area Available in Welds [A41 + A42 + A43]:
  = (Wo<sup>2</sup> - Ar Lost)*Fr3+((Wi-can/0.707)<sup>2</sup> - Ar Lost)*fr2 + Wp<sup>2</sup>*fr4
  = (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00
  = 0.090 \text{ in}^2
Area Available in Element [A5]:
  = (min(Dp,DL) - (Nozzle OD)) * (min(tp,Tlwp,te)) * fr4
  = ( 5.1477 - 4.5036 ) * 0.2362 * 1.0000
  = 0.114 \text{ in}^2
NOZZLE N1
AREA AVAILABLE, A1 to A5 | Design | External | Mapnc |
```

```
99
```

Area Required Ar 0.448 NA NA Area in Shell A1 0.111 NA NA Area in Nozzle Wall A2 0.074 NΑ NA Area in Inward Nozzle A3 0.000 NA NA Area in Welds A41+A42+A43 0.090 NA NA Area in Element A5 0.184 NA NA TOTAL AREA AVAILABLE Atot 0.459 NA NA Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (4.2362*0.1057*1.0+2*0.1189*0.1057*1.0*(1-1.00)) $= 0.448 \text{ in}^2$ **Reinforcement Areas per Figure UG-37.1** Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 4.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.119 ( 1.00 * 0.1319 - 1.0 * 0.1057 ) * ( 1 - 1.000 )  $= 0.111 \text{ in}^2$ Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 0.330 ) * ( 0.1189 - 0.0063 ) * 1.0000  $= 0.074 \text{ in}^2$ Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4  $= (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00$  $= 0.090 \text{ in}^2$ Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 5.5118 - 4.4740 ) * 0.2362 * 1.0000  $= 0.184 \text{ in}^2$ **NOZZLE N2** Results of Nozzle Reinforcement Area Calculations: (in²) AREA AVAILABLE, A1 to A5 | Design | External | Mapnc _____ 0.448 Area Required Ar NA NA A1 Area in Shell 0.111 NA NA Area in Nozzle Wall Area in Nozzle WallA2Area in Inward NozzleA3 A2 0.074 NA NA NA 0.000 NA Area in Welds A41+A42+A43 0.090İ NA NΑ Area in Element A5 0.184 NA NA TOTAL AREA AVAILABLE Atot 0.459 NA NA Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (4.2362*0.1057*1.0+2*0.1189*0.1057*1.0*(1-1.00)) $= 0.448 \text{ in}^2$ **Reinforcement Areas per Figure UG-37.1** Area Available in Shell [A1]: = d(E1*t - F*tr) - 2 * tn(E1*t - F*tr) * (1 - fr1)= 4.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.119 (1.00 * 0.1319 - 1.0 * 0.1057) * (1 - 1.000) $= 0.111 \text{ in}^2$ Area Available in Nozzle Wall Projecting Outward [A2]: = (2 * Tlwp) * (tn - trn) * fr2= (2 * 0.330) * (0.1189 - 0.0063) * 1.0000  $= 0.074 \text{ in}^2$ Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4  $= (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00$  $= 0.090 \text{ in}^2$ 

```
Area Available in Element [A5]:
  = (min(Dp,DL) - (Nozzle OD)) * (min(tp,Tlwp,te)) * fr4
  = ( 5.5118 - 4.4740 ) * 0.2362 * 1.0000
  = 0.184 \text{ in}^2
NOZZLE N3
AREA AVAILABLE, A1 to A5 | Design | External | Mapnc |
 -----

  Area Required
  Ar
  0.448

  Area in Shell
  A1
  0.111

                                                     NA
                                                                 NA
 Area in ShellA1Area in Nozzle WallA2Area in Inward NozzleA3
                                                     NA
                                    0.111
                                                                 NA
                                    0.074
                                                    NA
                                                                 NA
                                      0.000|
                                                     NA
                                                                 NA
 Area in Welds A41+A42+A43
                                                     NA
                                      0.090
                                                                 NA
 Area in Element A5
                                      0.184
                                                     NA
                                                                 NA
 TOTAL AREA AVAILABLE Atot
                                      0.459
                                                     NA
                                                                 NA
Area Required [A]:
  = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)
  = (4.2362 \times 0.1057 \times 1.0 + 2 \times 0.1189 \times 0.1057 \times 1.0 \times (1 - 1.00))
  = 0.448 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
  = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
  = 4.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.119
    (1.00 * 0.1319 - 1.0 * 0.1057) * (1 - 1.000)
  = 0.111 \text{ in}^2
Area Available in Nozzle Wall Projecting Outward [A2]:
  = ( 2 * Tlwp ) * ( tn - trn ) * fr2
  = ( 2 * 0.330 ) * ( 0.1189 - 0.0063 ) * 1.0000
  = 0.074 \text{ in}^2
Area Available in Welds [A41 + A42 + A43]:
  = (Wo^{2} - Ar Lost) * Fr_{3} + ((Wi - can/0.707)^{2} - Ar Lost) * fr_{2} + Wp^{2} * fr_{4}
  = (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00
  = 0.090 \text{ in}^2
Area Available in Element [A5]:
  = (min(Dp,DL) - (Nozzle OD)) * (min(tp,Tlwp,te)) * fr4
  = ( 5.5118 - 4.4740 ) * 0.2362 * 1.0000
  = 0.184 \text{ in}^2
NOZZLE N4
Results of Nozzle Reinforcement Area Calculations: (in<sup>2</sup>)
 AREA AVAILABLE, A1 to A5 | Design | External | Mapnc
 _____
 Area Required Ar
                                  0.448
                                                     NA
                                                                 NA
                                                   NA
 Area in ShellA1Area in Nozzle WallA2Area in Inward NozzleA3
                                   0.111
                                                                 NA
                                      0.074
                                                     NA
                                                                 NA
                                     0.000
                                                     NA
                                                                 NA
 Area in Welds A41+A42+A43
                                                    NA
                                     0.090
                                                                 NA
 Area in Element
                    A5 |
                                     0.184
                                                     NA
                                                                 NA
 TOTAL AREA AVAILABLE Atot
                                     0.459
                                                     NA
                                                                 NA
Area Required [A]:
  = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)
  = (4.2362*0.1057*1.0+2*0.1189*0.1057*1.0*(1-1.00))
  = 0.448 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
  = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
  = 4.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.119
    (1.00 * 0.1319 - 1.0 * 0.1057) * (1 - 1.000)
  = 0.111 \text{ in}^2
```

Area Available in Nozzle Wall Projecting Outward [A2]:

```
= (2 * Tlwp) * (tn - trn) * fr2
  = ( 2 * 0.330 ) * ( 0.1189 - 0.0063 ) * 1.0000
  = 0.074 \text{ in}^2
Area Available in Welds [A41 + A42 + A43]:
  = (Wo<sup>2</sup> - Ar Lost) *Fr3+((Wi-can/0.707)<sup>2</sup> - Ar Lost) *fr2 + Wp<sup>2</sup>*fr4
  = (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00
  = 0.090 \text{ in}^2
Area Available in Element [A5]:
  = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4
  = ( 5.5118 - 4.4740 ) * 0.2362 * 1.0000
  = 0.184 \text{ in}^2
NOZZLE N5
AREA AVAILABLE, A1 to A5 | Design| External|
                                                             Mapnc
 Area RequiredAr0.448NAArea in ShellA10.111NAArea in Nozzle WallA20.074NA
                                                      NA
                                                                   NA
                                                                 NA
 Area in ShellA1Area in Nozzle WallA2Area in Inward NozzleA3
                                                                  NA
                                                  NA
NA
                                     0.000
                                                                 NA
 Area in Welds A41+A42+A43
                                     0.090
                                                                   NA
Area in Element A5
                                     0.184
                                                     NA
                                                                   NA
Area Required [A]:
  = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)
  = (4.2362*0.1057*1.0+2*0.1189*0.1057*1.0*(1-1.00))
  = 0.448 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
  = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
  = 4.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.119
    (1.00 * 0.1319 - 1.0 * 0.1057) * (1 - 1.000)
  = 0.111 \text{ in}^2
Area Available in Nozzle Wall Projecting Outward [A2]:
  = ( 2 * Tlwp ) * ( tn - trn ) * fr2
  = ( 2 * 0.330 ) * ( 0.1189 - 0.0063 ) * 1.0000
  = 0.074 in^{2}
Area Available in Welds [A41 + A42 + A43]:
  = (Wo^{2} - Ar Lost) * Fr3 + ((Wi - can/0.707)^{2} - Ar Lost) * fr2 + Wp^{2} * fr4
  = (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00
  = 0.090 \text{ in}^2
Area Available in Element [A5]:
  = (min(Dp,DL) - (Nozzle OD)) * (min(tp,Tlwp,te)) * fr4
  = (5.5118 - 4.4740) * 0.2362 * 1.0000
  = 0.184 \text{ in}^2
NOZZLE N6
AREA AVAILABLE, A1 to A5 Design External
                                                             Mapnc
Area RequiredAr0.448NAArea in ShellA10.111NAArea in Nozzle WallA20.074NAArea in Inward NozzleA30.000NAArea in WeldsA41+A42+A430.090NAArea in ElementA50.184NATOTAL AREA AVAILABLEAtot0.459NA
 NA
                                                                 NA
                                                                  NA
                                                                   NA
                                                                   NA
                                                                   NA
                                                                   NA
Area Required [A]:
  = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c)
  = (4.2362*0.1057*1.0+2*0.1189*0.1057*1.0*(1-1.00))
  = 0.448 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
```

Area Available in Shell [A1]:

```
= d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
  = 4.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.119
    (1.00 * 0.1319 - 1.0 * 0.1057) * (1 - 1.000)
  = 0.111 \text{ in}^2
Area Available in Nozzle Wall Projecting Outward [A2]:
  = ( 2 * Tlwp ) * ( tn - trn ) * fr2
  = (2 * 0.330) * (0.1189 - 0.0063) * 1.0000
  = 0.074 \text{ in}^2
Area Available in Welds [A41 + A42 + A43]:
  = (Wo<sup>2</sup> - Ar Lost)*Fr3+((Wi-can/0.707)<sup>2</sup> - Ar Lost)*fr2 + Wp<sup>2</sup>*fr4
  = (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00
  = 0.090 \text{ in}^2
Area Available in Element [A5]:
  = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4
  = ( 5.5118 - 4.4740 ) * 0.2362 * 1.0000
  = 0.184 \text{ in}^2
NOZZLE N7
AREA AVAILABLE, A1 to A5
                                    Design| External|
                                                              Mapnc
 -----
 Area Required
                      Ar
                                   1.082
                                                       NA
                                                                   NA
 Area in Shell
                            A1
                                       0.268
                                                      NA
                                                                   NA
 Area in Nozzle WallA2Area in Inward NozzleA3
                                       0.153
                                                       NA
                                                                   NA
                                       0.000
                                                       NA
                                                                   NA
 Area in Welds A41+A42+A43
                                       0.090
                                                       NA
                                                                   NA
 Area in Element A5
                                       0.575
                                                       NA
                                                                   NA
 TOTAL AREA AVAILABLE
                           Atot
                                       1.085
                                                       NA
                                                                   NA
Area Required [A]:
  = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)
  = (10.2362*0.1057*1.0+2*0.2469*0.1057*1.0*(1-1.00))
  = 1.082 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
  = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
  = 10.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.247
    (1.00 * 0.1319 - 1.0 * 0.1057) * (1 - 1.000)
  = 0.268 \text{ in}^2
Area Available in Nozzle Wall Projecting Outward [A2]:
  = ( 2 * Tlwp ) * ( tn - trn ) * fr2
  = (2 * 0.330) * (0.2469 - 0.0152) * 1.0000
  = 0.153 \text{ in}^2
Area Available in Welds [A41 + A42 + A43]:
  = (Wo<sup>2</sup> - Ar Lost) *Fr3+((Wi-can/0.707)<sup>2</sup> - Ar Lost) *fr2 + Wp<sup>2</sup>*fr4
  = (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00
  = 0.090 \text{ in}^2
Area Available in Element [A5]:
  = (min(Dp,DL) - (Nozzle OD)) * (min(tp,Tlwp,te)) * fr4
  = (13.9764 - 10.7299) * 0.2362 * 1.0000
  = 0.575 in^{2}
NOZZLE N8
Reinforcement CALCULATION, Description: N8
ASME Code, Section VIII, Div. 1, 2015, UG-37 to UG-45
                                                             2.000 in.
 Actual Inside Diameter Used in Calculation
 Actual Thickness Used in Calculation
                                                             0.344 in.
Nozzle input data check completed without errors.
Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
  = (P*R)/(Sv*E-0.6*P) per UG-27 (c)(1)
  = (50.76*35.5512) / (17100*1.00-0.6*50.76)
```

```
= 0.1057 in.
```

```
Read thk per UG-37(a) of Nozzle Wall, Trn [Int. Press]
  = (P*R)/(Sn*E-0.6*P) per UG-27 (c)(1)
  = (50.76*1.12) / (34059*1.00-0.6*50.76)
  = 0.0017 in.
UG-40, Limits of Reinforcement : [Internal Pressure]
 Parallel to Vessel Wall (Diameter Limit)
                                                              Dl
                                                                      4.4724
                                                                                in.
 Parallel to Vessel Wall, opening length
                                                               d
                                                                       2.2362
                                                                                in.
                                                                      0.3297 in.
 Normal to Vessel Wall (Thickness Limit), no pad
                                                            Tlnp
Note:
Taking a UG-36(c)(3)(a) exemption for nozzle: N8.
This calculation is valid for nozzles that meet all the requirements of
paragraph UG-36. Please check the Code carefully, especially for nozzles
that are not isolated or do not meet Code spacing requirements. To force
the computation of areas for small nozzles go to Tools->Configuration
and check the box to force the UG-37 small nozzle area calculation or
force the Appendix 1-10 computation in Nozzle Design Options.
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.]
 Wall Thickness for Internal/External pressures
                                                              ta = 0.1198 in.
 Wall Thickness per UG16(b),
                                                           tr16b = 0.1806 in.
 Wall Thickness, shell/head, internal pressure
                                                           trb1 = 0.2238 in.
 Wall Thickness
                                       tb1 = max(trb1, tr16b) = 0.2238 in.
 Wall Thickness
                                       tb2 = max(trb2, tr16b) = 0.1806 in.
 Wall Thickness per table UG-45
                                                             tb3 = 0.2961 in.
Determine Nozzle Thickness candidate [tb]:
  = \min[tb3, max(tb1, tb2)]
  = \min[0.296, \max(0.2238, 0.1806)]
  = 0.2238 in.
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
  = \max(ta, tb)
  = \max(0.1198, 0.2238)
  = 0.2238 in.
Available Nozzle Neck Thickness = 0.3441 in. --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
Nozzle to Flange Weld skipped as Nozzle is not a Carbon Steel material.
Nozzle-Shell Weld for Nozzle skipped as Nozzle is not a Carbon Steel material.
Weld Size Calculations, Description: N8
 Intermediate Calc. for nozzle/shell Welds
                                                     Tmin
                                                                 0.1319 in.
Results Per UW-16.1:
                           Required Thickness
                                                    Actual Thickness
                          0.0923 = 0.7 * tmin.
 Nozzle Weld
                                                   0.2783 = 0.7 * Wo in.
NOTE : Skipping the nozzle attachment weld strength calculations.
   Per UW-15(b)(2) the nozzles exempted by UG-36(c)(3)(a)
   (small nozzles) do not require a weld strength check.
Maximum Allowable Pressure for this Nozzle at this Location:
 Converged Max. Allow. Pressure in Operating case
                                                                  63.298 psig
Note: The MAWP of this junction was limited by the parent Shell/Head.
The Drop for this Nozzle is : 0.0255 in.
The Cut Length for this Nozzle is, Drop + Ho + H + T : 4.2125 in.
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2016
NOZZLE N9
Reinforcement CALCULATION, Description: N9
ASME Code, Section VIII, Div. 1, 2015, UG-37 to UG-45
 Actual Inside Diameter Used in Calculation
                                                                  3.000 in.
 Actual Thickness Used in Calculation
                                                                  0.300 in.
Nozzle input data check completed without errors.
Regd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
  = (P*R)/(Sv*E-0.6*P) per UG-27 (c)(1)
```

```
= (50.76*35.5512) / (17100*1.00-0.6*50.76)
  = 0.1057 \text{ in}.
Read thk per UG-37(a) of Nozzle Wall, Trn [Int. Press]
  = (P*R)/(Sn*E-0.6*P) per UG-27 (c)(1)
  = (50.76*1.62) / (34059*1.00-0.6*50.76)
  = 0.0024 in.
UG-40, Limits of Reinforcement : [Internal Pressure]
 Parallel to Vessel Wall (Diameter Limit)
                                                              Dl
                                                                      6.4724 in.
                                                                      3.2362 in.
 Parallel to Vessel Wall, opening length
                                                               d
Normal to Vessel Wall (Thickness Limit), no pad
                                                                      0.3297 in.
                                                            Tlnp
Note:
Taking a UG-36(c)(3)(a) exemption for nozzle: N9.
This calculation is valid for nozzles that meet all the requirements of
paragraph UG-36. Please check the Code carefully, especially for nozzles
that are not isolated or do not meet Code spacing requirements. To force
the computation of areas for small nozzles go to Tools->Configuration
and check the box to force the UG-37 small nozzle area calculation or
force the Appendix 1-10 computation in Nozzle Design Options.
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.]
                                                              ta = 0.1205 in.
 Wall Thickness for Internal/External pressures
 Wall Thickness per UG16(b),
                                                           tr16b = 0.1806 in.
                                                           trb1 = 0.2238 in.
 Wall Thickness, shell/head, internal pressure
 Wall Thickness
                                       tb1 = max(trb1, tr16b) = 0.2238 in.
 Wall Thickness
                                       tb2 = max(trb2, tr16b) = 0.1806 in.
 Wall Thickness per table UG-45
                                                             tb3 = 0.3157 in.
Determine Nozzle Thickness candidate [tb]:
  = \min[tb3, max(tb1, tb2)]
  = \min[0.316, \max(0.2238, 0.1806)]
  = 0.2238 in.
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
  = \max(ta, tb)
  = \max(0.1205, 0.2238)
  = 0.2238 in.
Available Nozzle Neck Thickness = 0.3000 in. --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
Nozzle to Flange Weld skipped as Nozzle is not a Carbon Steel material.
Nozzle-Shell Weld for Nozzle skipped as Nozzle is not a Carbon Steel material.
Weld Size Calculations, Description: N9
 Intermediate Calc. for nozzle/shell Welds
                                                     Tmin
                                                                 0.1319 in.
Results Per UW-16.1:
                           Required Thickness
                                                    Actual Thickness
Nozzle Weld
                          0.0923 = 0.7 * \text{tmin}. 0.2783 = 0.7 * \text{Wo in}.
NOTE : Skipping the nozzle attachment weld strength calculations.
  Per UW-15(b)(2) the nozzles exempted by UG-36(c)(3)(a)
  (small nozzles) do not require a weld strength check.
Maximum Allowable Pressure for this Nozzle at this Location:
 Converged Max. Allow. Pressure in Operating case
                                                                  63.298 psig
Note: The MAWP of this junction was limited by the parent Shell/Head.
The Drop for this Nozzle is : 0.0457 in.
The Cut Length for this Nozzle is, Drop + Ho + H + T : 4.2328 in.
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2016
NOZZLE N10
Reinforcement CALCULATION, Description: N10
ASME Code, Section VIII, Div. 1, 2015, UG-37 to UG-45
Actual Inside Diameter Used in Calculation
                                                                 2.000 in.
Actual Thickness Used in Calculation
                                                                  0.344 in.
Nozzle input data check completed without errors.
```

```
105
```

```
Read thk per UG-37(a) of Cylindrical Shell, Tr [Int. Press]
  = (P*R)/(Sv*E-0.6*P) per UG-27 (c)(1)
  = (50.76*35.5512) / (17100*1.00-0.6*50.76)
  = 0.1057 \text{ in}.
Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]
  = (P*R)/(Sn*E-0.6*P) per UG-27 (c)(1)
  = (50.76 \times 1.12) / (34059 \times 1.00 - 0.6 \times 50.76)
  = 0.0017 in.
UG-40, Limits of Reinforcement : [Internal Pressure]
 Parallel to Vessel Wall (Diameter Limit)
                                                               Dl
                                                                       4.4724 in.
 Parallel to Vessel Wall, opening length
                                                               d
                                                                       2.2362 in.
 Normal to Vessel Wall (Thickness Limit), no pad
                                                            Tlnp
                                                                       0.3297 in.
Note:
Taking a UG-36(c)(3)(a) exemption for nozzle: N10.
This calculation is valid for nozzles that meet all the requirements of
paragraph UG-36. Please check the Code carefully, especially for nozzles
that are not isolated or do not meet Code spacing requirements. To force
the computation of areas for small nozzles go to Tools->Configuration
and check the box to force the UG-37 small nozzle area calculation or
force the Appendix 1-10 computation in Nozzle Design Options.
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.]
 Wall Thickness for Internal/External pressures
                                                               ta = 0.1198 in.
                                                           tr16b = 0.1806 in.
 Wall Thickness per UG16(b),
 Wall Thickness, shell/head, internal pressure
                                                            trb1 = 0.2238 in.
 Wall Thickness
                                       tb1 = max(trb1, tr16b) = 0.2238 in.
 Wall Thickness
                                       tb2 = max(trb2, tr16b) = 0.1806 in.
 Wall Thickness per table UG-45
                                                              tb3 = 0.2961 in.
Determine Nozzle Thickness candidate [tb]:
  = \min[tb3, max(tb1, tb2)]
  = min[ 0.296 , max( 0.2238 , 0.1806 ) ]
  = 0.2238 in.
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
  = max(ta, tb)
  = \max(0.1198, 0.2238)
  = 0.2238 in.
Available Nozzle Neck Thickness = 0.3441 in. --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
Nozzle to Flange Weld skipped as Nozzle is not a Carbon Steel material.
Nozzle-Shell Weld for Nozzle skipped as Nozzle is not a Carbon Steel material.
Weld Size Calculations, Description: N10
 Intermediate Calc. for nozzle/shell Welds
                                                     Tmin
                                                                 0.1319 in.
Results Per UW-16.1:
                           Required Thickness
                                                     Actual Thickness
 Nozzle Weld
                          0.0923 = 0.7 * tmin. 0.2783 = 0.7 * Wo in.
NOTE : Skipping the nozzle attachment weld strength calculations.
   Per UW-15(b)(2) the nozzles exempted by UG-36(c)(3)(a)
   (small nozzles) do not require a weld strength check.
Maximum Allowable Pressure for this Nozzle at this Location:
 Converged Max. Allow. Pressure in Operating case
                                                                  63.298 psig
Note: The MAWP of this junction was limited by the parent Shell/Head.
The Drop for this Nozzle is : 0.0255 in.
The Cut Length for this Nozzle is, Drop + Ho + H + T : 4.2125 in.
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2016
NOZZLE N11
Reinforcement CALCULATION, Description: N11
ASME Code, Section VIII, Div. 1, 2015, UG-37 to UG-45
 Actual Inside Diameter Used in Calculation
                                                                  2.000 in.
```

```
Actual Thickness Used in Calculation
                                                                  0.344 in.
Nozzle input data check completed without errors.
Read thk per UG-37(a) of Cylindrical Shell, Tr [Int. Press]
  = (P*R)/(Sv*E-0.6*P) per UG-27 (c) (1)
  = (50.76*35.5512) / (17100*1.00-0.6*50.76)
  = 0.1057 \text{ in.}
Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]
  = (P*R)/(Sn*E-0.6*P) per UG-27 (c)(1)
  = (50.76 \times 1.12) / (34059 \times 1.00 - 0.6 \times 50.76)
  = 0.0017 in.
UG-40, Limits of Reinforcement : [Internal Pressure]
                                                               Dl
 Parallel to Vessel Wall (Diameter Limit)
                                                                       4.4724 in.
 Parallel to Vessel Wall, opening length
                                                                       2.2362 in.
                                                               d
 Normal to Vessel Wall (Thickness Limit), no pad
                                                                       0.3297 in.
                                                            Tlnp
Note:
Taking a UG-36(c)(3)(a) exemption for nozzle: N11.
This calculation is valid for nozzles that meet all the requirements of
paragraph UG-36. Please check the Code carefully, especially for nozzles
that are not isolated or do not meet Code spacing requirements. To force
the computation of areas for small nozzles go to Tools->Configuration
and check the box to force the UG-37 small nozzle area calculation or
force the Appendix 1-10 computation in Nozzle Design Options.
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.]
 Wall Thickness for Internal/External pressures
                                                               ta = 0.1198 in.
 Wall Thickness per UG16(b),
                                                           tr16b = 0.1806 in.
 Wall Thickness, shell/head, internal pressure
                                                            trb1 = 0.2238 in.
 Wall Thickness
                                       tb1 = max(trb1, tr16b) = 0.2238 in.
 Wall Thickness
                                       tb2 = max(trb2, tr16b) = 0.1806 in.
 Wall Thickness per table UG-45
                                                              tb3 = 0.2961 in.
Determine Nozzle Thickness candidate [tb]:
  = \min[tb3, max(tb1, tb2)]
  = \min[0.296, \max(0.2238, 0.1806)]
  = 0.2238 in.
inimum Wall Thickness of Nozzle Necks [tUG-45]:
  = \max(ta, tb)
  = \max(0.1198, 0.2238)
  = 0.2238 in.
Available Nozzle Neck Thickness = 0.3441 in. --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
Nozzle to Flange Weld skipped as Nozzle is not a Carbon Steel material.
Nozzle-Shell Weld for Nozzle skipped as Nozzle is not a Carbon Steel material.
Weld Size Calculations, Description: N11
 Intermediate Calc. for nozzle/shell Welds
                                                     Tmin
                                                                 0.1319 in.
Results Per UW-16.1:
                           Required Thickness
                                                     Actual Thickness
 Nozzle Weld
                          0.0923 = 0.7 * tmin. 0.2783 = 0.7 * Wo in.
NOTE : Skipping the nozzle attachment weld strength calculations.
   Per UW-15(b)(2) the nozzles exempted by UG-36(c)(3)(a)
   (small nozzles) do not require a weld strength check.
Maximum Allowable Pressure for this Nozzle at this Location:
 Converged Max. Allow. Pressure in Operating case
                                                                  63.298 psiq
Note: The MAWP of this junction was limited by the parent Shell/Head.
The Drop for this Nozzle is : 0.0255 in.
The Cut Length for this Nozzle is, Drop + Ho + H + T : 4.2125 in.
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2016
NOZZLE N12
AREA AVAILABLE, A1 to A5
                                  Design | External |
                                                                   Mapnc
```

```
_____
 Area Required Ar 0.871 NA
                                                                    NA
Area in ShellA10.215Area in Nozzle WallA20.126Area in Inward NozzleA30.000Area in WeldsA41+A42+A430.090
                                                  NA
                                                                    NΑ
                                                       NA
                                                                    NA
                                                       NA
                                                                    NA
                                                       NA
                                                                    NA
 Area in Element A5
                                      0.456
                                                       NA
                                                                    NA
TOTAL AREA AVAILABLE Atot
                                                      NA
                                      0.888
                                                                    NA
Area Required [A]:
  = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)
  = (8.2362*0.1057*1.0+2*0.2039*0.1057*1.0*(1-1.00))
  = 0.871 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
  = d(E1*t - F*tr) - 2 * tn(E1*t - F*tr) * (1 - fr1)
  = 8.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.204
    (1.00 * 0.1319 - 1.0 * 0.1057) * (1 - 1.000)
  = 0.215 in^2
Area Available in Nozzle Wall Projecting Outward [A2]:
  = ( 2 * Tlwp ) * ( tn - trn ) * fr2
  = ( 2 * 0.330 ) * ( 0.2039 - 0.0122 ) * 1.0000
  = 0.126 \text{ in}^2
Area Available in Welds [A41 + A42 + A43]:
  = (Wo<sup>2</sup> - Ar Lost) *Fr3+((Wi-can/0.707)<sup>2</sup> - Ar Lost) *fr2 + Wp<sup>2</sup>*fr4
  = (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00
  = 0.090 \text{ in}^2
Area Available in Element [A5]:
  = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4
  = ( 11.2205 - 8.6441 ) * 0.2362 * 1.0000
  = 0.456 \text{ in}^2
NOZZLE K3
Reinforcement CALCULATION, Description: K3
ASME Code, Section VIII, Div. 1, 2015, UG-37 to UG-45
 Actual Inside Diameter Used in Calculation
                                                              2.000 in.
Actual Thickness Used in Calculation
                                                              0.344 in.
Nozzle input data check completed without errors.
Read thk per UG-37(a) of Cylindrical Shell, Tr [Int. Press]
  = (P*R)/(Sv*E-0.6*P) per UG-27 (c)(1)
  = (50.76*35.5512)/(17100*1.00-0.6*50.76)
  = 0.1057 in.
Regd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]
  = (P*R)/(Sn*E-0.6*P) per UG-27 (c)(1)
  = (50.76*1.12) / (34059*1.00-0.6*50.76)
  = 0.0017 in.
UG-40, Limits of Reinforcement : [Internal Pressure]
 Parallel to Vessel Wall (Diameter Limit)
                                                           Dl
                                                                 4.4724 in.
                                                          d
 Parallel to Vessel Wall, opening length
                                                                   2.2362 in.
Normal to Vessel Wall (Thickness Limit), no pad Tlnp
                                                                  0.3297 in.
Note:
Taking a UG-36(c)(3)(a) exemption for nozzle: K3.
This calculation is valid for nozzles that meet all the requirements of
paragraph UG-36. Please check the Code carefully, especially for nozzles
that are not isolated or do not meet Code spacing requirements. To force
the computation of areas for small nozzles go to Tools->Configuration
and check the box to force the UG-37 small nozzle area calculation or
force the Appendix 1-10 computation in Nozzle Design Options.
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.]
```

```
Wall Thickness for Internal/External pressures
                                                          ta = 0.1198 in.
 Wall Thickness per UG16(b),
                                                       tr16b = 0.1806 in.
 Wall Thickness, shell/head, internal pressure
                                                       trb1 = 0.2238 in.
 Wall Thickness
                                     tb1 = max(trb1, tr16b) = 0.2238 in.
                                     tb2 = max(trb2, tr16b) = 0.1806 in.
 Wall Thickness
 Wall Thickness per table UG-45
                                                          tb3 = 0.2961 in.
Determine Nozzle Thickness candidate [tb]:
  = \min[tb3, max(tb1, tb2)]
  = \min[0.296, \max(0.2238, 0.1806)]
  = 0.2238 in.
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
  = \max(ta, tb)
  = \max(0.1198, 0.2238)
  = 0.2238 in.
Available Nozzle Neck Thickness = 0.3441 in. --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
Nozzle to Flange Weld skipped as Nozzle is not a Carbon Steel material.
Nozzle-Shell Weld for Nozzle skipped as Nozzle is not a Carbon Steel material.
Weld Size Calculations, Description: K3
 Intermediate Calc. for nozzle/shell Welds
                                                  Tmin
                                                              0.1319 in.
Results Per UW-16.1:
                         Required Thickness
                                                  Actual Thickness
Nozzle Weld
                         0.0923 = 0.7 * \text{tmin.} \quad 0.2783 = 0.7 * \text{Wo in.}
NOTE : Skipping the nozzle attachment weld strength calculations.
  Per UW-15(b)(2) the nozzles exempted by UG-36(c)(3)(a)
  (small nozzles) do not require a weld strength check.
Maximum Allowable Pressure for this Nozzle at this Location:
 Converged Max. Allow. Pressure in Operating case
                                                               63.298 psig
Note: The MAWP of this junction was limited by the parent Shell/Head.
The Drop for this Nozzle is : 0.0255 in.
The Cut Length for this Nozzle is, Drop + Ho + H + T : 4.2125 in.
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2016
NOZZLE K2B
AREA AVAILABLE, A1 to A5 | Design | External |
                                                              Mapnc
 _____
 Area Required Ar 0.448
                                                        NA
                                                                    NA
                            A1 |
                                      0.111
 Area in Shell
                                                        NA
                                                                    NA
 Area in Nozzle WallA2Area in Inward NozzleA3
                                      0.074 İ
                                                       NA
                                                                    NA
                                                        NA
                                                                    NA
                                       0.000
 Area in Welds A41+A42+A43
                                        0.090
                                                        NA
                                                                    NA
 Area in Element
                            A5
                                        0.184
                                                        NA
                                                                    NA
 TOTAL AREA AVAILABLE Atot
                                        0.459
                                                        NA
                                                                    NA
. Area Required [A]:
  = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)
  = (4.2362 \times 0.1057 \times 1.0 + 2 \times 0.1189 \times 0.1057 \times 1.0 \times (1 - 1.00))
  = 0.448 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
  = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
  = 4.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.119
    (1.00 * 0.1319 - 1.0 * 0.1057) * (1 - 1.000)
  = 0.111 \text{ in}^2
Area Available in Nozzle Wall Projecting Outward [A2]:
  = ( 2 * Tlwp ) * ( tn - trn ) * fr2
  = ( 2 * 0.330 ) * ( 0.1189 - 0.0063 ) * 1.0000
  = 0.074 \text{ in}^2
Area Available in Welds [A41 + A42 + A43]:
```

```
= (Wo^{2} - Ar Lost) * Fr^{3} + ((Wi - can/0.707)^{2} - Ar Lost) * fr^{2} + Wp^{2} * fr^{4}
  = (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00
 = 0.090 \text{ in}^2
Area Available in Element [A5]:
  = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4
  = ( 5.5118 - 4.4740 ) * 0.2362 * 1.0000
  = 0.184 \text{ in}^2
NOZZLE M1
AREA AVAILABLE, A1 to A5 | Design| External|
                                                        Mapnc
 _____
Area Required Ar | 2.140
                                                  NA
                                                             NA
Area in ShellA1Area in Nozzle WallA2Area in Inward NozzleA3
                                  0.529
0.294
                                                  NA
                                                              NA
                                                NA '
                                                             NA
                                   0.000
                                                 NA
                                                             NA
                                                 NA
Area in Welds A41+A42+A43
                                  0.090
                                                             NA
                   A5 |
Area in Element
                                   1.272
                                                 NA
                                                             NA
                                   2.186
TOTAL AREA AVAILABLE Atot
                                                 NA
                                                             NA
Area Required [A]:
 = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)
  = (20.2362*0.1057*1.0+2*0.4760*0.1057*1.0*(1-1.00))
  = 2.140 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
 = d(E1*t - F*tr) - 2 * tn(E1*t - F*tr) * (1 - fr1)
 = 20.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.476
    (1.00 * 0.1319 - 1.0 * 0.1057) * (1 - 1.000)
 = 0.529 \text{ in}^2
Area Available in Nozzle Wall Projecting Outward [A2]:
 = (2 * Tlwp) * (tn - trn) * fr2
  = ( 2 * 0.330 ) * ( 0.4760 - 0.0301 ) * 1.0000
 = 0.294 \text{ in}^2
Area Available in Welds [A41 + A42 + A43]:
 = (Wo<sup>2</sup> - Ar Lost) *Fr3+((Wi-can/0.707)<sup>2</sup> - Ar Lost) *fr2 + Wp<sup>2</sup>*fr4
  = (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00
  = 0.090 \text{ in}^2
Area Available in Element [A5]:
 = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4
  = ( 26.5748 - 21.1882 ) * 0.2362 * 1.0000
  = 1.272 \text{ in}^2
NOZZLE M2
AREA AVAILABLE, A1 to A5 | Design| External| Mapnc|
 _____
                                                       _ _ _ _ _ _ _ _ _ _
Area RequiredAr2.140Area in ShellA10.529
                                                  NA
                                                              NA
                                                 NA
                                                             NA
Area in ShellA1Area in Nozzle WallA2Area in Inward NozzleA3
                                  0.294
                                                 NA
                                                             NA
                                  0.000
                                                 NA
                                                             NA
                                   0.090
Area in Welds A41+A42+A43
                                                 NA
                                                             NA
Area in Element A5
                                   1.272
                                                 NA
                                                             NΑ
TOTAL AREA AVAILABLE Atot
                                  2.186
                                                  NA
                                                              NA
Area Required [A]:
 = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c)
  = (20.2362*0.1057*1.0+2*0.4760*0.1057*1.0*(1-1.00))
  = 2.140 \text{ in}^2
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
 = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
 = 20.236 ( 1.00 * 0.1319 - 1.0 * 0.106 ) - 2 * 0.476
    ( 1.00 * 0.1319 - 1.0 * 0.1057 ) * ( 1 - 1.000 )
```

```
110
```

 $= 0.529 n^2$ Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 0.330 ) * ( 0.4760 - 0.0301 ) * 1.0000  $= 0.294 \text{ in}^2$ Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4  $= (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00$  $= 0.090 \text{ in}^2$ Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 26.5748 - 21.1882 ) * 0.2362 * 1.0000  $= 1.272 \text{ in}^2$ NOZZLE K2A AREA AVAILABLE, A1 to A5 | Design | External Mapnc _____ Area RequiredAr0.404NAArea in ShellA10.159NAArea in Nozzle WallA20.075NA NA Area in ShellA10.159Area in Nozzle WallA20.075Area in Inward NozzleA30.000Area in WeldsA41+A42+A430.090Area in ElementA50.114TOTAL AREA AVAILABLEAtot0.437 NA NA NA 0.000 NA NA NA NA | NA | NA NA Area Required [A]: = (d * tr*F + 2 * tn * tr*F * (1-fr1)) UG-37(c) = (4.2643*0.0947*1.0+2*0.1189*0.0947*1.0*(1-1.00))  $= 0.404 \text{ in}^2$ **Reinforcement Areas per Figure UG-37.1** Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 4.264 ( 1.00 * 0.1319 - 1.0 * 0.095 ) - 2 * 0.119 (1.00 * 0.1319 - 1.0 * 0.0947 ) * (1 - 1.000 )  $= 0.159 \text{ in}^2$ Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2/sin( alpha3 ) = ( 2 * 0.330 ) * ( 0.1189 - 0.0063 ) * 1.0000/sin( 85.3 )  $= 0.075 in^{2}$ Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4  $= (0.0649) * 1.00 + (0.0000) * 1.00 + 0.0248^{2} * 1.00$  $= 0.090 \text{ in}^2$ Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 5.1477 - 4.5036 ) * 0.2362 * 1.0000  $= 0.114 \text{ in}^2$ NOZZLE k4 **Reinforcement CALCULATION, Description: k4** ASME Code, Section VIII, Div. 1, 2015, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 2.000 in. Actual Thickness Used in Calculation 0.344 in. Nozzle input data check completed without errors. Read thk per UG-37(a) of Elliptical Head, Tr [Int. Press] = (P*K1*D))/(2*Sv*E-0.2*P) per UG-37(a)(3) = (50.76*0.897*71.1024)/(2 *17100.00*1.00-0.2*50.76) = 0.0947 in. Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(Sn*E-0.6*P) per UG-27 (c)(1)

```
= (50.76 \times 1.12) / (34059 \times 1.00 - 0.6 \times 50.76)
```

= 0.0017 in. UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) נם 4.4724 in. 2.2362 in. Parallel to Vessel Wall, opening length d Normal to Vessel Wall (Thickness Limit), no pad 0.3297 in. Tlnp Note: Taking a UG-36(c)(3)(a) exemption for nozzle: k4. This calculation is valid for nozzles that meet all the requirements of paragraph UG-36. Please check the Code carefully, especially for nozzles that are not isolated or do not meet Code spacing requirements. To force the computation of areas for small nozzles go to Tools->Configuration and check the box to force the UG-37 small nozzle area calculation or force the Appendix 1-10 computation in Nozzle Design Options. UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 0.1198 in. Wall Thickness per UG16(b), tr16b = 0.1806 in. Wall Thickness, shell/head, internal pressure trb1 = 0.2232 in. Wall Thickness tb1 = max(trb1, tr16b) = 0.2232 in.Wall Thickness tb2 = max(trb2, tr16b) = 0.1806 in. Wall Thickness per table UG-45 tb3 = 0.2961 in.Determine Nozzle Thickness candidate [tb]:  $= \min[tb3, max(tb1, tb2)]$  $= \min[0.296, \max(0.2232, 0.1806)]$ = 0.2232 in. Minimum Wall Thickness of Nozzle Necks [tUG-45]:  $= \max(ta, tb)$  $= \max(0.1198, 0.2232)$ = 0.2232 in. Available Nozzle Neck Thickness = 0.3441 in. --> OK Weld Size Calculations, Description: k4 Intermediate Calc. for nozzle/shell Welds Tmin 0.1319 in. Results Per UW-16.1: Required Thickness Actual Thickness 0.0923 = 0.7 * tmin.Nozzle Weld 0.2783 = 0.7 * Wo in.NOTE : Skipping the nozzle attachment weld strength calculations. Per UW-15(b)(2) the nozzles exempted by UG-36(c)(3)(a) (small nozzles) do not require a weld strength check. Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 63.298 psig Note: The MAWP of this junction was limited by the parent Shell/Head. The Drop for this Nozzle is : 0.1812 in. The Cut Length for this Nozzle is, Drop + Ho + H + T : 4.3701 in. PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2016

# Lampiran 9. Tegangan Izin Material ➤ SA 516 Gr.60

#### ASME 831.3-2014

(14)

									Speci	fied			
			inte	Class/				Min.	Min Strengt		Min.		
Material	Spec. No.	Type/ Grade	UNS No.	Condition/ Temper	Size, in.	P-No. (5)	Notes	Temp., °F (6)	Tensile		Temp. to 100	200	300
Carbon Steel Pipes and Tube	es (2)												
A285 Gr. A	A134	2.5		1222		1	(8b)(57)	В	45	24	15.0	14.7	14.
A285 Gr. A	A672	A45	K01700		22.2	1	(57)(59)(67)	В	45	24	15.0	14.7	14.
Butt weld	API SL	A25	2240			1	(8a)(77)	-20	45	25	15.0	15.0	14
Smls & ERW	API SL			***		1	(57)(59)(77)	B	45	25	1000	15.0	
							ononom				10.00	19.00	****
555).	A179	***	K01200		112	1	5769	-20	47	26	15.7	15.7	15.
Type F	A53	A	K02504	1.222	262	1	(8a)	20	48	30	16.0	16.0	16.0
	A139	A		1000		1	(8b)	A	48	30	16.0	16.0	
	A587		K11500			1	(57)(59)	-20	48	30	16.0	16.0	16.0
112	A53	A	K02504	1.12	242	1	67/69	в	48	30	16.0	16.0	16
	A106	A	K02501			1	67)	B	48	30	16.0	16.0	
	A135	A			223	1	6769	8	48	30	16.0	16.0	
	A369	IPA	K02501		22	1	(57)	B	48	30	16.0	16.0	
100	AP1 5L	A	3339	2.22	0020	1	(57)(59)(77)	В	48	30	16.0	16.0	16.0
A285 Gr. B	A134			992	224	1	(8b) (57)	в	50	27	16.7	16.5	15.9
A285 Gr. B	A672	A50	K02200	1.1		1	(57)(59)(67)	В	50	27	16.7	16.5	
A285 Gr. C	A134					1	(86) (57)	A	55	30	18.3	18.3	17
	A524	H	KD2104			1	67)	-20	55	30	18.3	18.3	
	A333	1	K03008	1	160	1	5759	-50	55	30	18.3	18.3	
	A334	1	K03008	10.00		1.	5759	-50	55	30	18.3	18.3	17.3
A285 Gr. C	A671	CA55	K02801	+ + +		1	(59)(67)	A	55	30	18.3	18.3	17.
A285 Gr. C	A672	A55	K02801			1	57(59)67)	A	55	30	18.3	18.3	17.5
A516 Gr. 55	A672	C55	K01800		252	1	6767	C	55	30	18.3	18.3	17.3
A516 Gr. 60	A671	CC 60	K02100	10.02	2245	1	(57)(67)	c	60	32	20.0	19.5	18.
A515 Gr. 60	A671	CB60	K02401	+		1	(57)(67)	B	60	32	20.0	19.5	18.9
A515 Gr. 60	A672	B-60	K02401		2.2.21	1	5767	B	60	32	20.0	19.5	18.9
A516 Gr. 60	A672	C60	K02100			1	5767	C	60	32	20.0	19.5	18.9
222	A139	8	K03003			1	(8b)	A	60	35	20.0	20.0	20.0
662	A135	в	K03018		***	1	(57)(59)	В	60	35	20.0	20.0	20.0
	A524	i i	K02104			1	37)	-20	60	35	20.0	20.0	
222	A53	8	K03005	1.11	17.7	1	6769	B	60	35	20.0	20.0	
• * *	A106	B	K03006	+ • •	** *	1	(57)	B	60	35	20.0	20.0	
	A333	6	K03006	(4.4.4	***	1	(57)	-50	60	35	20.0	20.0	
111	A334	6 (PB	K03006	833	007	1	(57)	-50	60	35	20.0	20.0	20.0
• • •	A369 A381	Y35	K0 30 0 6	1.1.1	***	1	(57)	-20 A	60 60	35	20.0	20.0	
	API SL				***	1	5769077)	8	60	35		20.0	

### Parts Aller bla Channels Tranka for Match (Comp) .....

	-	1.1097
ASME	831.	3-2014

		Basi	c Allowa	ble Stre	ss, <i>S</i> , ks	i, at Me	alTemp	erature,	°F [Note	(1)]				
400	500	600	650	700	750	800	850	900	950	1,000	1,050	1,100	Type/ Grade	Spec. No.
														102 232
													Pipes an	Carbon Stee d Tubes (2)
13.7	13.0	12.3	11.9	11.5	10.7	9.2	7.9	5.9			***			A1 34
13.7	13.0	12.3	11.9	11,5	10.7	9.2	7.9	5.9	4.0	2.5	1.6	1.0	A45	A672
14.2											***	+ **	A25	API SL
14.2					+ + •							+ • •	A25	API SL
14.8	14.1	13.3	12.8	12.4	10.7	9.2	7.9	5.9	4.0	2.5	1.6	1.0	993	A1 79
														100
16.0	***			4.44	+ + +	***	+++	** *	***			+++	A	A53
		11.0						***	**+		+ + + ·	4.44	A	A1 39
16.0	16.0	15.3	14.6	12.5	10.7	9.2	7.9		1970	1998			111	AS 87
16.0	16.0	15.3	14.6	12.5	10.7	9.2	7.9	5.9	4.0	2.5	1.6	1.0	A	A53
16.0	16.0	15.3	14.6	12.5	10.7	9.2	7.9	5.9	4.0	2.5	1.6	1.0	A	A106
16.0	16.0	15.3	14.6	12.5	10.7	9.2	7.9	5.9	4.0	2.5	1.6	1.0	A	A1 35
16.0	16.0	15.3	14.6	12.5	10.7	9.2	7.9	5.9	4.0	2.5	1.6	1.0	IPA	A3 69
16.0	16.0	15.3	14.6	12.5	10.7	9.2	7.9	5.9	4.0	2.5	1.6	1.0	A	API 5L
15.4	14.7	13.8	13.3	12.5	10.7	9.2	7.9	5.9						A1 34
15.4	14.7	13.8	13.3	12.5	10.7	9.2	7.9	5.9	4.0	2.5	1.6	1.0	A50	A672
17.1	16.3	15.3	14.8	14.3	13.0	10.8	8.7	5.9						A1 34
17.1	16.3	15.3	14.8	14.3	13.0	10.8	8.7	5.9	4.0	2.5			1	A5 24
17.1	16.3	15.3	14.8	143	13.0	10.8	8.7	5.9	4.0	2.5	1.6	1.0	1	A3 33
17.1	16.3	15.3	14.8	14.3	13.0	10.8	8.7	5.9	4.0	2.5	1.6	1.0	1	A334
17.1	16.3	15.3	14.8	14.3	13.0	10.8	8.7	5.9	4.0	2.5	1.6	1.0	CA55	A671
17.1	16.3	15.3	14.8	14.3	13.0	10.8	8.7	5.9	4.0	2.5	1.6	1.0	A5 5	A672
17.1	16,3	15.3	14.8	14.3	13.0	10.8	8.7	5.9	4.0	2.5	1.6	1.0	C55	A672
18.2	17.4	16.4	15.8	15.3	13.9	11.4	8.7	5.9	4.0	2.5			CC60	A671
18.2	17.4	16.4	15.8	15.3	13.9	11.4	8.7	5.9	4.0	2.5	1.6	1.0	CB60	A671
18.2	17.4	16.4	15.8	15.3	13.9	11.4	8.7	5.9	4.0	2.5	1.6	1.0	860	A672
18.2	17.4	16.4	15.8	15.3	13.9	11.4	8.7	5.9	4.0	2.5	1.6	1.0	C60	A672
		× ++					***		***	***		+++	8	A1 39
19.9	19.0	17.9	17.3	16.7	13.9	11.4	8.7	5.9	4.0	2.5			В	A1 35
19.9	19.0	17.9	17.3	16.7	13.9	11.4	8.7	5.9	4.0	2.5			1	A5 24
10.0	10.0		-	THE REAL						0.0000			0	-
19.9	19.0	17.9	17.3	16.7	13.9	11.4	8.7	5.9	4.0	2.5	1.6	1.0	8	A53
19.9	19.0	17.9	17.3	16.7	13.9	11.4	8.7	5.9	4.0	2.5	1.6	1.0	B	A106
19.9	19.0	17.9	17.3	16.7	13.9	11.4	8.7	5.9	4.0	2.5	1.6	1.0	6	A333
19.9	19.0	17.9	17.3	16.7	13.9	11.4	8.7	5.9	4.0	2.5	1.6	1.0	6	A334
19.9	19.0	17.9	17.3	16.7	13.9	11.4	8.7	5.9	4.0	2.5	1.6	1.0	IP8	A3 69
19.9	19.0	17.9	17.3	16.7	13.9	11.4	8.7	5.9	4.0	2.5	1.6	1.0	¥35	A381
19.9	19.0	17.9	17.3	16.7	13.9	11.4	8.7	5.9	4.0	2.5	1.6	1.0	8	API SL

Table A-1 Basic Allowable Stresses in Tension for Metals (Cont'd) Numbers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

Lampiran 10. MAWP Flange

Forgings	Castings	Plates
A 105 (1)	A 216 Gr. WCB (1)	A 515 Gr. 70 (1)
A 350 Gr. LF2 (1)		A 516 Gr. 70 (1), (2)
A 350 Gr. LF6 CL 1 (4)		A 537 Cl. 1 (3)
A 350 Gr. LF 3		
	A 105 (1) A 350 Gr. LF2 (1) A 350 Gr. LF6 CL 1 (4)	A 105 (1) A 216 Gr. WCB (1) A 350 Gr. LF2 (1) A 350 Gr. LF6 Cl. 1 (4)

Table F2-1.1 Pressure-Temperature Ratings for Group 1.1 Materials

		Workin	ng Pressures	by Classes, p	sig		
Class Temp., °F	150	300	400	600	900	1500	2500
-20 to 100	285	740	985	1480	2220	3705	6170
200	260	680	905	1360	2035	3395	5655
300	230	655	870	1310	1965	3270	5450
400	200	635	845	1265	1900	3170	5280
500	170	605	805	1205	1810	3015	5025
600	140	570	755	1135	1705	2840	4730
650	125	550	730	1100	1650	2745	4575
700	110	530	710	1060	1590	2655	4425
750	95	505	675	1015	1520	2535	4230
800	80	410	550	825	1235	2055	3430
850	65	320	425	640	955	1595	2655
900	50	230	305	460	690	1150	1915
950	35	135	185	275	410	685	1145
1000	20	85	115	170	255	430	715

NOTES:

 Upon prolonged exposure to temperatures above 800°F, the carbide phase of steel may be converted to graphite. Permissible, but not recommended for prolonged use above 800°F.

(2) Not to be used over 850°F.

(3) Not to be used over 700%.

(4) Not to be used over 500°F.

ANNEX F

Table F2-3.8 Pressure-Temperature Ratings for Group 3.8 Materials

Table 12-3.0 1	ressure-remperature kat	ings for	oroup 5.0 materials
Nominal Designation	Forgings	Castings	Plates
54NI-16Mo-15Cr	B 462 Gr. N10276 (1), (2)		B 575 Gr. N10276 (1), (2)
60NI-22Cr-9Mo-3.5Cb	B 564 Gr. N06625 (3), (4)		B 443 Gr. N06625 (3), (4)
62NI-28Mo-5Fe	B 335 Gr. N10001 (1), (5), (6)		B 333 Gr. N10001 (1), (6)
70NI-16Mo-7Cr-5Fe	B 573 Gr. N10003 (5), (3)		B 434 Gr. N10003 (3)
61NI-16Mo-16Cr	B 574 Gr. N06455 (1), (5), (6)		B 575 Gr. N06455 (1), (6)
42NI-21.5Cr-3Mo-2.3Cu	B 564 Gr. N08825 (3), (7)		B 424 Gr. N08825 (3), (7)
55NI-21Cr-13.5Mo	B 462 Gr. ND6022 (1), (2), (8)		B 575 Gr. N06022 (1), (2), (8)
55NI-23Cr-16Mo-1.6Cu	B 462 Gr. N06 200 (1), (6)		B 575 Gr. N06200 (1), (6)

Working Pressures by Classes, psig							
Class	150	300	400	600	900	1500	2500
Temp., °F	150	300	400	600	900	1500	2500
-20 to 100	290	750	1000	1500	2250	3750	6250
200	260	750	1000	1500	2250	3750	6250
300	230	730	970	1455	2185	3640	6070
400	200	700	930	1395	2095	3490	5820
500	170	665	885	1330	1995	3325	5540
600	140	605	805	1210	1815	3025	5040
650	125	590	785	1175	1765	2940	4905
700	110	570	755	1135	1705	2840	4730
750	95	530	710	1065	1595	2660	4430
800	80	510	675	1015	1525	2540	4230
850	65	485	650	975	1460	2435	4060
900	50	450	600	900	1350	2245	374
950	35	385	515	775	1160	1930	3220
1000	20	365	485	725	1090	1820	3030
1050		360	480	720	1080	1800	3000
1100		325	430	645	965	1610	2685
1150		275	365	550	825	1370	2285
1200		205	275	410	615	1030	1715
1250		165	220	330	495	825	1370
1300		120	160	240	360	600	1000