BAB IV

PEMBAHASAN

4.1. Deskripsi Data

Pada bab ini, akan dilakukan pembahasan dan pengoalahan data, selanjutnya akan dibandingkan dengan standar yang berlaku dan dianalisis. Data tersebut kemudian diolah menggunakan metode SAIFI (System Average Interruption Frequency Index), SAIDI (System Average Interruption Duration Index) dan CAIDI (Customer Average Interruption Duration Index). Data tersebut merupakan data yang diperoleh dari Gardu Induk 150 kV Bantul yang berlokasi di jalan Parangtritis KM 7 Sewon, Bangunharjo, Bantul, Daerah Istimewa Yogyakarta. Gardu Induk Bantul memilki 18 penyulang yang menyuplai ke seluruh wilayah Bantul, penyulang tersebut antara lain: penyulang BNL 01, BNL 02, BNL 03, BNL 04, BNL 05, BNL 06, BNL 07, BNL 08, BNL 09, BNL 10, BNL 11, BNL 12, BNL 13, BNL 13, BNL 14, BNL 15, BNL 16, BNL 17, BNL 18. Gardu Induk 150 kV Bantul memiliki 3 buah transformator daya dengan kapasitas masing-masing sebesar 60 MVA dan transformator PS (pemakaian sendiri) dengan kapasitas 100 KVA. Transformator 1 mensuplai penyulang-penyulang antara lain penyulang BNL 01, BNL 02, BNL 03, BNL 05. Kemudian transformator 2 mensuplai penyulang seperti penyulang BNL 04, BNL 11, BNL 12, BNL 16, dan BNL 18. Sedangkan transformator 3 mensuplai penyulang BNL 06, BNL 07, BNL 08, BNL 09, BNL 10, BNL 13, BNL 14, BNL 15, dan BNL 17.

4.2. Jumlah Pelanggan Pada Seluruh Penyulang Gardu Induk 150 kV Bantul Dan Daerah Yang Di Suplai Penyulang

Total pelanggan yang terdapat pada Gardu Induk 150 kV Bantul dari penyulang BNL 01 sampai dengan BNL 18 adalah sebesar 329.056 pelanggan pada tahun 2019. Data yang diperoleh tersebut merupakan derkembangan data terakhir yang penulis dapatkan. Menurut data yang diperoleh dari gardu induk 150 kV Bantul, jumlah pelanggan terbesar terdapat pada penyulang BNL 06

dengan jumlah pelanggan sebanyak 39.697 pelanggan, sedangkan jumlah pelanggan terkecil terdapat pada penyulang BNL 13 dengan jumlah pelanggan sebanyak 1 pelanggan saja. Hal ini dikarenakan pada penyulang BNL 13 merupakan *express feeder* yakni penyulang yang khusus mensuplai perusahaan. Pada tabel 4.1 berikut menunjukan rincian jumlah pelanggan seluruh yang terdapat pada Gardu Induk 150 kV Bantul yang terdiri dari penyulang BNL 01 sampai dengan penyulang BNL 18 beserta daerah yang di suplai penyulang.

Tabel 4.1 Jumlah Pelanggan Seluruh Penyulang Pada Gardu Induk 150 kV Bantul Beserta Daerah Yang Disuplai Penyulang

		JUMLAH	DAERAH YANG DI SUPLAI
NO	PENYULANG	PELANGGAN	PENYULANG
1	BNL 01	19.435	Dongkelan, Ringroad Selatan, Jl. Bantul, Jl. S Suparman, Jl. Wahid Hasyim, Taman Sari, Jl. MT Haryono, Paatangpuluhan
2	BNL 02	9.645	Jl. Parangteritis, Jl. M Sutoyo, Jl. Kol Sugiono, Jl Brigjen Katamso
3	BNL 03	19.614	Tunggak, Taman Siswa, Jl. Veteran Gedong Kuning
4	BNL 04	10.383	Jl. Paris, Ringroad Selatan, Ketandan, Wiyoro jl. Wonosari
5	BNL 05	26.967	Pasar Telo, Kota Gede, Ngipik Banguntapan
6	BNL 06	39.697	Jl. Imogiri, Wonolelo, Pleret
7	BNL 07	21.564	Jl. Bantul, Guasari, Bantul Kota, Madukismo
8	BNL 08	20.336	Kweni Madukismo, Kasihan Ringroad Selatan
9	BNL 09	5.536	Ringroad Selatan, Jl. Krapyak, Jl. DI Panjaitan, Jl. Panembahan, Jl. Wijilan, Kraton
10	BNL 10	612	Krapyak dan Samitex
11	BNL 11	32.504	Jl. Parangtritis, Bakulan, Pundong, Kretek, Parang Tristis
12	BNL 12	38.383	Jl. Parangtritis, Sewon, Trihanggo, Palbapang, Sanden, Srandaan, Pandan Simo,
13	BNL 13	Express Feeder	PT. SGM

Total Pelanggan 329.056						
18	BNL 18	16.641	Palbapang, Jl. Samas, Pantai Samas			
17	BNL 17	9.547	PT. Ameyah, Jl. Goa Selarong, Pajangan			
16	BNL 16	27.467	Jl Paris, Ringroad Selatan, Pasar Ngipik, Baturetno			
15	BNL 15	2.535	Pondok Pesantren Krapyak, Wirobrajan			
14	BNL 14	28.189	Jl. Imogiri Barat, Pacar Timbulharjo, Jl. Imogiri Timur, Wonokromo Segoroyoso Pleret, Dlingo			

4.3. Data Gangguan Seluruh Penyulang Pada Gardu Induk 150 kV Bantul

Data gangguan berikut merupakan data gangguan jaringan distribusi berupa data frequensi pemadaman dan data durasi pemadaman pada seluruh penyulanng selama tahun 2018.

Data tabel 4.2 di bawah ini merupakan data gangguan seluruh penyulang yang terdapat pada Gardu Induk 150 kV Bantul terhitung dari bulan januari sampai dengan bulan desember 2018 yang terdiri dari data penyulang yang mengalami gangguan, jam ketika terjadi gangguan, jam ketika gangguan telah selesai diperbaiki, dan lama pemadaman akibat gangguan dalam satuan menit maupun satuan jam. Dari keseluruhan data angka yang terdapat pada tabel di bawah ini merupakan data murni yang didapatkan dari Gardu Induk 150 kV Bantul.

Tabel 4.2 Gangguan Seluruh Penyulang Pada Gardu Induk 150 kV Bantul Selama
Tahun 2018

			TAM	TAM	LAMA	LAMA
NO TANGGAL		PENYULANG	JAM	JAM	PADAM	PADAM
			PADAM	NYALA	(MENIT)	(JAM)
1	01-01-2018	BNL 02	09:33	10:12	39	0,65
2	09-01-2018	BNL 03	12:52	13:53	61	1,01
3	14-01-2018	BNL 05	22:34	22:37	2	0,03

4	20-01-2018	BNL 18	08:55	11:33	178	2,96
5	21-01-2018	BNL 08	14:15	14:54	39	0,65
6	22-01-2018	BNL 10	11:14	12:52	98	1,63
7	22-01-2018	BNL 09	16:35	19:19	163	2,71
8	22-01-2018	BNL 13	16:41	18:03	81	1,35
9	22-01-2018	BNL 01	16:41	19:08	146	2,43
10	28-01-2018	BNL 03	17:53	22:23	269	4,48
11	29-01-2018	BNL 01	13:52	14:35	42	0,7
12	03-02-2018	BNL 18	13:05	13:56	50	0,83
13	03-02-2018	BNL 04	14:59	16:41	101	1,68
14	03-02-2018	BNL 04	16:45	16:58	12	0,2
15	05-02-2018	BNL 11	03:48	04:46	58	0,96
16	08-02-2018	BNL 01	10:18	10:20	1	0,01
17	14-02-2018	BNL 02	04:14	04:40	25	0,41
18	19-02-2018	BNL 06	19:07	22:22	195	3,25
19	04-03-2018	BNL 07	09:15	10:47	91	1,51
20	06-03-2018	BNL 13	14:24	17:59	214	3,56
21	06-03-2018	BNL 01	14:24	15:09	44	0,73
22	15-03-2018	BNL 02	11:28	12:18	49	0,81
23	16-03-2018	BNL 11	20:53	23:29	156	2,6
24	17-03-2018	BNL 09	16:08	17:32	83	1,38
25	18-03-2018	BNL 02	06:57	07:51	53	0,88
26	18-03-2018	BNL 15	13:58	16:07	128	2,13
27	24-03-2018	BNL 03	08:44	10:01	77	1,28
28	30-03-2018	BNL 02	01:17	01:43	25	0,41
29	30-03-2018	BNL 11	03:24	04:08	44	0,73
30	03-04-2018	BNL 04	14:55	17:55	179	2,98
31	07-04-2018	BNL 01	15:57	16:59	61	1,01
32	08-04-2018	BNL 15	10:53	10:58	4	0,06
33	09-04-2018	BNL 02	19:59	20:46	46	0,76

34	18-04-2018	BNL 08	18:25	20:24	118	1,96
35	24-04-2018	BNL 08	14:09	14:34	24	0,4
36	27-04-2018	BNL 02	08:56	10:44	108	1,8
37	27-05-2018	BNL 09	01:21	01:58	37	0,61
38	08-06-2018	BNL 08	18:38	20:26	88	1,46
39	18-06-2018	BNL 07	06:35	07:33	58	0,96
40	22-06-2018	BNL 02	15:17	15:56	39	0,56
41	25-06-2018	BNL 11	16:17	17:19	62	1,03
42	17-07-2018	BNL 02	05:03	05:08	4	0,06
43	17-07-2018	BNL 02	05:08	06:09	60	1
44	06-08-2018	BNL 11	12:18	13:00	41	0,68
45	31-08-2018	BNL 15	19:27	21:38	131	2,18
46	11-09-2018	BNL 08	16:39	17:07	27	0,45
47	13-09-2018	BNL 18	17:41	21:12	210	3,5
48	13-09-2018	BNL 17	17:41	21:31	229	3,81
49	14-10-2018	BNL 14	19:22	21:14	112	1,86
50	15-10-2018	BNL 11	08:53	12:07	194	3,23
51	07-11-2018	BNL 08	08:36	10:10	94	1,56
52	19-11-2018	BNL 09	06:18	07:24	66	1,1
53	24-11-2018	BNL 12	08:23	10:55	152	2,53
54	28-11-2018	BNL 10	07:03	08:56	113	1,88
55	30-11-2018	BNL 08	08:31	10:12	100	1,66
56	5-12-2018	BNL 06	15:42	16:31	49	0,81
57	8-12-2018	BNL 09	11:22	13:06	103	1,71
58	30-12-2018	BNL 07	13:21	13:31	10	0,16
59	30-12-2018	BNL 01	13:21	13:48	27	0,45
60	30-12-2018	BNL 06	14:09	16:06	116	1,93

4.4. Data Frekuensi Gangguan Seluruh Penyulang Pada Gardu Induk 150 kV Bantul

Agar memudahkan proses pengamatan serta perhitungan, frekuensi gangguan pada masing-masing penyulang dikelompokkan dengan penyulang yang mengalami gangguan. Data gangguan tersebut dapat dilihat pada tabel 4.3.

Data pada tabel 4.3 merupakan rangkuman data frekuensi gangguan pada seluruh penyulang setiap bulan selama tahun 2018. Data frekuensi gangguan menunjukkan berapa kali jumlah gangguan yang mengakibatkan pemadaman pada seluruh penyulang. Selanjutnya dari jumlah gangguan pada seluruh penyulang tersebut kemudian dilakukan penjumlahan sehingga diperoleh total gagguan yang mengakibatkan pemadaman pada selurh penyulang.

Data yang ditunjukkan pada tabel 4.3 berasal dari data yang telah dijelaskan sebelumnya pada data gangguan seluruh penyulang yakni pada tabel 4.2.

Tabel 4.3 Frekuensi Gangguan setiap Penyulang pada Gardu Induk 150 kV Bantul Tahun 2018

No	Penyulang	Jumlah		Bulan							
		Pelanggan	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agu	Sept
1	BNL 01	19435	2	1	-	1	-	-	-	-	-
2	BNL 02	9645	1	1	3	2	-	1	2	-	-
3	BNL 03	19614	2	-	1	-	-	-	-	-	-
4	BNL 04	10383	-	2	-	1	-	-	-	-	-
5	BNL 05	26967	1	-	-	-	-	-	-	-	-
6	BNL 06	39697	-	1	-	-	-	-	-	-	-
7	BNL 07	21564		ı	1	-		1	ı	-	-
8	BNL 08	20336	1	ı	-	2	ı	1	1	-	1
9	BNL 09	5536	1	ı	1	-	1	ı	ı	-	-
10	BNL 10	612	1	-	-	-	-	-	-	-	-
11	BNL 11	32504	ı	ı	2	-	ı	1	1	1	-
12	BNL 12	38383	-	-	-	-	-	-	-	-	-
13	BNL 13	1*	1	-	1	-	-	-	-	-	-
14	BNL 14	28189	ı	ı	-	-	ı	1	1	-	-
15	BNL 15	2535	-	-	1	-	-	-	-	1	-
16	BNL 16	27467	-	-	-	-	-	-	-	-	-
17	BNL 17	9547	-	-	-	-	-	-	-	-	1
18	BNL 18	16641	1	1	_	-	-	-	-	_	1

^{*) =} PT. Sarihusada Generasi Mahardika (SGM) Yogyakarta.

Data tabel 4.4 merupakan data hasil rangkuman total frekuensi gangguan pada seluruh penyulang yang menunjukkan berapa kali gangguan yang mengakibatkan pemadaman. Data yang ditunjukan pada tabel 4.4 dibawah ini merupakan data total gangguan seluruh penyulang yang mengakibatkan pemedaman selama tahun 2018.

Tabel 4.4 Frekuensi Pemadaman Pada Gardu Induk 150 kV Bantul Tahun 2018

NO DENIVIH AND		FREKUENSI PEMADAMAN
NO	PENYULANG	TAHUN 2018
1	BNL 01	6
2	BNL 02	10
3	BNL 03	3
4	BNL 04	3
5	BNL 05	1
6	BNL 06	3
7	BNL 07	3
8	BNL 08	7
9	BNL 09	5
10	BNL 10	2
11	BNL 11	6
12	BNL 12	1
13	BNL 13	2
14	BNL 14	1
15	BNL 15	3
16	BNL 16	0
17	BNL 17	1
18	BNL 18	3
To	tal Frekuensi	60 Kali/ Tahun
Pemadaman		ou Kaii/ Tanun

4.5. Data Durasi Gangguan Seluruh Penyulang Pada Gardu Induk 150 kV Bantul

Untuk memudahkan proses pengamatan serta perhitungan, durasi pemadaman pada masing-masing penyulang dikelompokkan dengan penyulang yang mengalami gangguan. Data tersebut dapat dilihat pada tabel di bawah ini.

Data tabel 4.5 merupakan rangkuman data durasi gangguan pada seluruh penyulang setiap bulannya selama kurun waktu 1 tahun terakhir yakni pada tahun 2018. Data durasi gangguan menunjukkan berapa lama gangguan yang mengakibatkan pemadaman pada seluruh penyulang. Selanjutnya dari lama pemadaman pada seluruh penyulang tersebut kemudian dilakukan penjumlahan sehingga diperoleh total lama pemadaman pada seluruh penyulang.

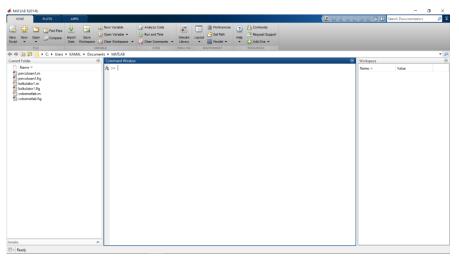
Data yang ditunjukkan pada tabel 4.5 berasal dari data yang telah dijelaskan sebelumnya pada data gangguan seluruh penyulang yakni pada tabel 4.2.

Tabel 4.5 Durasi Pemadaman seluruh Penyulang pada Gardu Induk 150 kV Bantul Tahun 2018

NO	Penyulang	Jumlah		Bulan							
		Pelanggan	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agu	Sept
1	BNL 01	19435	3,13	0,01	-	1,01	-	_	-	-	-
2	BNL 02	9645	0,65	0,41	2,1	2,56	-	0,56	1,06	-	-
3	BNL 03	19614	5,49	-	1,28	-	-	-	-	-	-
4	BNL 04	10383	-	1,88	-	2,98	-	-	-	-	-
5	BNL 05	26967	0,03		-	-	-	-	-	-	-
6	BNL 06	39697	-	3,25	-	-	-	-	-	-	-
7	BNL 07	21564	-	-	1,51	-	-	0,96	-	-	-
8	BNL 08	20336	0,65	-	-	2,36	-	1,46	-	-	0,45
9	BNL 09	5536	2,71	-	1,38	-	0,61	-	-	-	-
10	BNL 10	612	1,63	-	-	-	-	-	-	_	-
11	BNL 11	32504	-	-	3,33	-	-	1,03	-	0,68	-
12	BNL 12	38383	-	-	_	-	-	-	-	_	-
13	BNL 13	1*	1,35	-	3,56	-	-	-	-	-	-
14	BNL 14	28189	-	-	-	-	-	-	-	_	-
15	BNL 15	2535	-	-	2,13	-	-	-	-	2,18	-
16	BNL 16	27467	-	-	-	-	-	-	-	-	-
17	BNL 17	9547	-	-	-	-	-	-	-	-	3,81
18	BNL 18	16641	2,96	0,83	-	-	-	-	-		3,5

^{*) =} PT. Sarihusada Generasi Mahardika (SGM) Yogyakarta.

Data tabel 4.6 merupakan data hasil rangkuman total durasi pemadaman pada seluruh penyulang yang menunjukkan berapa lama pemadaman akibat gangguan pada seluruh penyulang. Data yang ditunjukkan pada tabel di bawah ini merupakan data total durasi pemadaman pada seluruh penyulang selama tahun 2018.

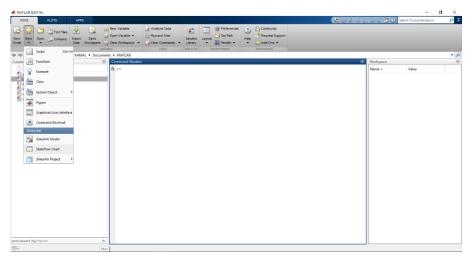

Tabel 4.6 Total Durasi Pemadaman Pada Gardu Induk 150 kV Bantul Tahun 2018

NO	PENYULANG	DURASI PEMADAMAN
NO	TENTULANO	TAHUN 2018
1	BNL 01	5,33
2	BNL 02	7,34
3	BNL 03	6,77
4	BNL 04	4,86
5	BNL 05	0,03
6	BNL 06	5,99
7	BNL 07	2,63
8	BNL 08	8,14
9	BNL 09	7,51
10	BNL 10	3,51
11	BNL 11	9,23
12	BNL 12	2,53
13	BNL 13	4,91
14	BNL 14	1,86
15	BNL 15	4,37
16	BNL 16	0
17	BNL 17	3,81
18	BNL 18	7,29
Total Durasi		86,11
Pemadaman		Jam/Tahun

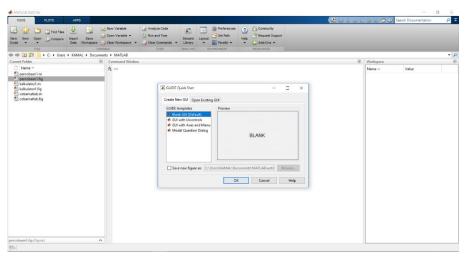
4.6. Perancangan Aplikasi Kalkulator Menggunakan GUI MATLAB

GUIDE atau GUI builder merupakan sebuah graphical user interface (GUI) yang dibangun dengan obyek grafik seperti tombol (button), kotak teks, slider, menu dan lain-lain. Aplikasi yang menggunakan GUI umumnya lebih mudah dipelajari dan digunakan karena orang yang menjalankannya tidak perlu mengetahui perintah yang ada dan bagaimana kerjanya. Langkah-langkah untuk membuat aplikasi kalkulator menggunakan GUI MATLAB adalah sebagai berikut:

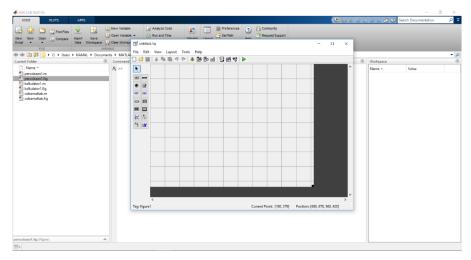
1. Membuka aplikasi software MATLAB


Gambar 4.1 Tampilan Awal MATLAB

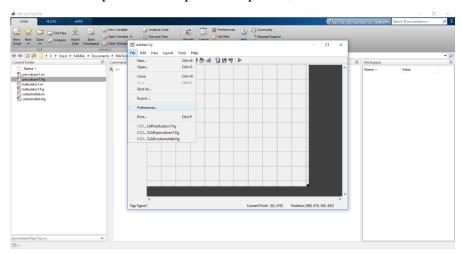
2. Membuka GUIDE MATLAB dengan cara mengetik "guide" pada command window dan tekan enter, sehingga muncul tampilan seperti pada gaambar di bawah ini


Gambar 4.2 GUI Quick Start

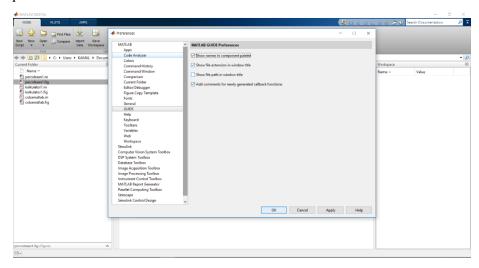
atau klik menu New>>Graphical User Interface seperti yang di tunjukkan di bawah ini


Gambar 4.3 Memulai GUI

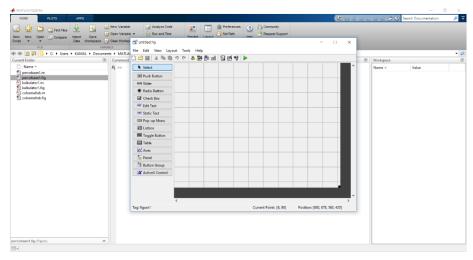
3. Klik "OK" pada GUIDE Quick Start>>Crate New GUI>>Blank GUI (default)


Gambar 4.4 Membuat GUI

4. Sehingga akan muncul tampilan GUIDE MATLAB seperti pada gambar berikut


Gambar 4.5 Tampilan GUI

5. Untuk menampilkan nama palet komponen, klik File>>Preferences


Gambar 4.6 Menu File pada GUI

6. Kemudian beri tanda centang ($\sqrt{}$) pada menu *Show names in component pallete* lalu klik "OK"


Gambar 4.7 Menu Preferences pada GUI

7. Sehingga akan muncul tampilan seperti pada gambar di bawah ini

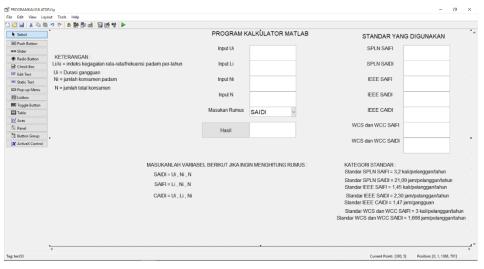
Gambar 4.8 Tampilan GUI

8. Buatlah desain tampilan dengan menggunakan 13 buah staric text, 12 edit text, 1 pushbutton, dan 1 popupmenu

Gambar 4.9 Desain Figure pada GUI

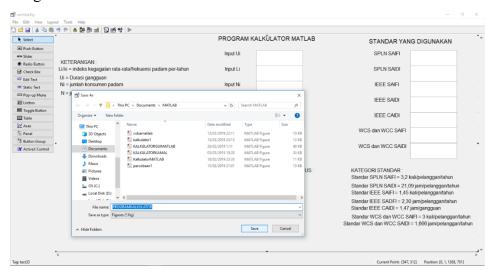
9. Editlah property masing-masing komponen dengan cara men-double klik setiap komponen lalu mengganti propertynya sesuai dengan tabel di bawah ini:

Tabel 4.7 Komponen Property Inspector pada GUI MATLAB

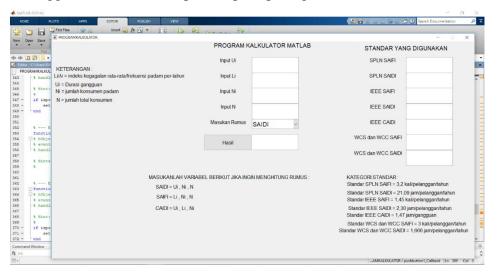

No	Nama Komponen	Property	Nilai
		Font Size	14
1	Static Text	String	Program Kalkulator MATLAB
		Tag	text1
		Font Size	12
2	Static Text	String	Input Ui
		Tag	text2
		Font Size	12
3	Static Text	String	Input Li
		Tag	text3
		Font Size	12
4	Static Text	String	Input Ni
		Tag	text4
5	Static Text	Font Size	12

		String	Input N
		Tag	text5
		Font Size	12
6	Static Text	String	SPLN SAIFI
		Tag	text6
		Font Size	12
7	Static Text	String	SPLN SAIDI
		Tag	text7
		Font Size	12
8	Static Text	String	IEEE SAIFI
		Tag	text8
		Font Size	12
9	Static Text	String	IEEE SAIDI
		Tag	text9
		Font Size	12
10	Static Text	String	IEEE CAIDI
		Tag	text10
		Font Size	12
11	Static Text	String	WCS dan WCC SAIFI
		Tag	text11
		Font Size	12
12	Static Text	String	WCS dan WCC SAIDI
		Tag	text12
		Font Size	12
13	Static Text	String	Masukan Rumus
		Tag	Text13
		Font Size	12
14	Pushbutton	String	Hasil
		Tag	Pushbutton1
15	Popupmenu	Font Size	12

		String	SAIDI SAIFI CAIDI
		Tag	Popupmenu1
		Font Size	12
16	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit1
		Font Size	12
17	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit2
		Font Size	12
18	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit3
		Font Size	12
19	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit4
		Font Size	12
20	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit5
		Font Size	12
21	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit6
		Font Size	12
22	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit7
		Font Size	12
23	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit8
		Font Size	12
24	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit9


		Font Size	12
25	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit10
		Font Size	12
26	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit11
		Font Size	12
27	Edit Text	String	<kosongkan></kosongkan>
		Tag	edit12

10. Sehingga tampilan GUI akan seperti pada gambar berikut:

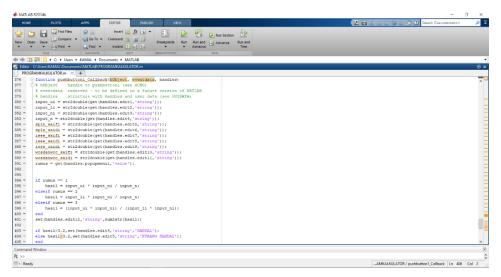

Gambar 4.10 Tampilan GUI Setelah di Desain

11. Jalankan (Run) GUI yang telah dibuat kemudian simpan filenya misalnya dengan nama "PROGRAMKALKULATOR"

Gambar 4.11 Simpan project GUI

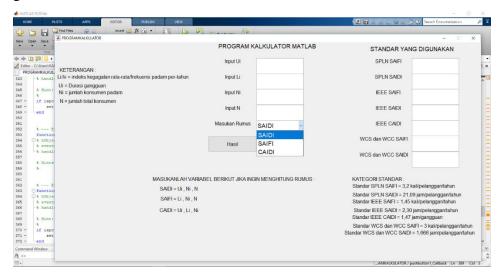
12. Sehingga akan muncul tampilan seperti pada gambar berikut

Gambar 4.12 Tampilan GUI ketika di Run


13. Isikan script program berikut pada pushbutton1_callback

```
input ui = str2double(get(handles.edit1, 'string'));
input li = str2double(get(handles.edit2, 'string'));
input ni = str2double(get(handles.edit3,'string'));
input n = str2double(get(handles.edit4,'string'));
spln saifi = str2double(get(handles.edit5,'string'));
spln saidi = str2double(get(handles.edit6,'string'));
ieee saifi = str2double(get(handles.edit7,'string'));
ieee saidi = str2double(get(handles.edit8,'string'));
ieee caidi = str2double(get(handles.edit9,'string'));
wcsdanwcc saifi =
str2double(get(handles.edit10, 'string'));
wcsdanwcc saidi =
str2double(get(handles.edit11, 'string'));
rumus = get(handles.popupmenu1, 'value');
if rumus == 1
                                              → SAIDI
    hasil = input ui * input ni / input n;
                                                 SAIFI
elseif rumus == 2
    hasil = input_li * input_ni / input_n;
elseif rumus == 3
                                                 → CAIDI
   hasil = (input ui * input ni) / (input li *
input ni);
set (handles.edit12, 'string', num2str(hasil))
if hasil<3.2, set(handles.edit5, 'string', 'HANDAL');</pre>
else hasil>3.2, set(handles.edit5, 'string', 'KURANG')
HANDAL');
                                    → SPLN SAIFI
end
if hasil<21.09, set (handles.edit6, 'string', 'HANDAL');</pre>
else hasil>21.09, set (handles.edit6, 'string', 'TIDAK
HANDAL');
                                     → SPLN SAIDI
end
if hasil<1.45, set (handles.edit7, 'string', 'HANDAL');</pre>
else hasil>1.45, set (handles.edit7, 'string', 'TIDAK
HANDAL');
                                    → IEEE SAIFI
end
```

```
if hasil<2.30, set(handles.edit8, 'string', 'HANDAL');</pre>
else hasil>2.30, set (handles.edit8, 'string', 'TIDAK
HANDAL');
end
                                        → IEEE SAIDI
if hasil<1.47, set(handles.edit9, 'string', 'HANDAL');</pre>
else hasil>1.47,set(handles.edit9,'string','TIDAK
HANDAL');
end
                                       → IEEE CAIDI
if hasil<3, set(handles.edit10, 'string', 'HANDAL');</pre>
else hasil>3, set(handles.edit10, 'string', 'TIDAK
HANDAL');
                                → WCS dan WCC SAIFI
end
if hasil<1.666, set(handles.edit11, 'string', 'HANDAL');</pre>
else hasil>1.666, set(handles.edit11, 'string', 'TIDAK
HANDAL');
                                  → WCS dan WCC SAIDI
end
```


Gambar 4.13 Script Program

14. Sehingga tampilan script program akan tampak seperti pada gambar berikut

Gambar 4.14 Menu editor pada MATLAB

15. Jalankan (Run) script tersebut sehingga akan muncul tampilan seperti pada gambar di bawah ini

Gambar 4.15 Jalankan (Run) script

4.7. Perhitungan dan Nilai Analisis Keandalan SAIFI Seluruh Penyulang

Rumus perhitungan yang digunakan untuk menghitung nilai keandalan SAIFI adalah sebagai berikut:

 $SAIFI = \frac{Perkalian\ Frekuensi\ Angka\ Kegagalan\ dan\ Pelanggan\ Padam}{Total\ jumlah\ pelanggan}$

$$SAIFI = \frac{\lambda i.Ni}{N}$$

Dimana:

Li/λi = indeks kegagalan rata-rata/frekuensi padam per-tahun

Ni = jumlah konsumen padam

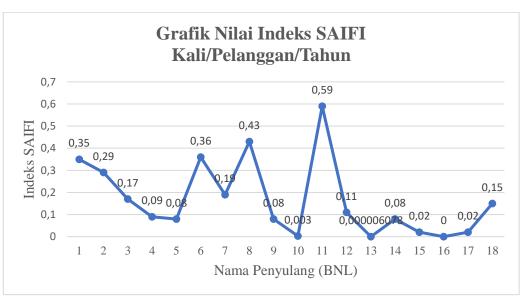
N = jumlah total konsumen

Rumus perhitungan diatas, nanti akan di dimasukkan ke dalam bahasa pemrograman MATLAB, yang nantinya akan difungsikan sebagai kalkulator dengan menggunakan metode GUI (*Graphical User Interface*) yang ada pada MATLAB.

Contoh perhitungan nilai SAIFI per-penyulang pada Gardu Induk 150 kV Bantul sebagai berikut:

1. **BNL 01** Tahun 2018 = $\frac{6x19435}{329056}$ = 0,35438 kali/pelanggan/tahun

Berikut merupakan gambar dari perhitungan nilai keandalan SAIFI menggunakan bahasa pemrograman MATLAB.


	PROGRAM K	ALKULATOR MATLAB	STANDAR YANG	DIGUNAKAN
VETER MANY	Input Ui		SPLN SAIFI	HANDAL
KETERANGAN : Li/λi = indeks kegagalan rata-rata/frekuensi padam per-tahun	Input Li	6	SPLN SAIDI	HANDAL
Ui = Durasi gangguan Ni = jumlah konsumen padam N = jumlah total konsumen	Input Ni	19435	IEEE SAIFI	HANDAL
IV – Julian total konsumen	Input N	329056	IEEE SAIDI	HANDAL
	Masukan Rumus	SAIFI	IEEE CAIDI	HANDAL
	Hasil	0.35438	WCS dan WCC SAIFI	HANDAL
	<u> </u>		WCS dan WCC SAIDI	HANDAL
MASUKANLAH VARIAN SAIDI = Ui , Ni , N SAIFI = Li , Ni , N CAIDI = Ui , Li , Ni	BEL BERIKUT JIKA ING	SIN MENGHITUNG RUMUS :	KATEGORI STANDAR : Standar SPLN SAIFI = 3,2 ka Standar SPLN SAIDI = 21,09 Standar IEEE SAIFI = 1,45 k Standar IEEE CAIDI = 2,30 j Standar IEEE CAIDI = 1,47 ja Standar WCS dan WCC SAIDI Standar WCS dan WCC SAIDI	jam/pelanggan/tahun ali/pelanggan/tahun am/pelanggan/tahun am/gangguan FI = 3 kali/pelanggan/tahun

Gambar 4.16 Contoh Perhitungan Nilai SAIFI pada Penyulang BNL 01 Tahun 2018

Agar mempermudah dalam hal pembacaan nilai SAIFI seluruh penyulang pada Gardu Induk 150 kV Bantul selama tahun 2018, maka data hasil perhitungan dikelompokkan ke dalam tabel dengan rumus perhitungan sesuai dengan contoh di atas. Berikut adalah tabel hasil perhitungan SAIFI seluruh penyulang pada Gardu Induk 150 kV Bantul selama tahun 2018 menggunakan bahasa pemrograman MATLAB seperti yang ditunjukkan pada tabel 4.8.

Tabel 4.8 Nilai SAIFI Seluruh Penyulang Pada Gardu Induk 150 kV Bantul Tahun 2018

No	PENYULANG	PARAMETER			SAIFI
110	TENTULANG	λi	λi Ni		Kali/Pelanggan/Tahun
1	BNL 01	6	19.435	329.056	0,35
2	BNL 02	10	9.645	329.056	0,29
3	BNL 03	3	19.614	329.056	0,17
4	BNL 04	3	10.383	329.056	0,09
5	BNL 05	1	26.967	329.056	0,08
6	BNL 06	3	39.697	329.056	0,36
7	BNL 07	3	21.564	329.056	0,19
8	BNL 08	7	20.336	329.056	0,43
9	BNL 09	5	5.536	329.056	0,08
10	BNL 10	2	612	329.056	0,003
11	BNL 11	6	32.504	329.056	0,59
12	BNL 12	1	38.383	329.056	0,11
13	BNL 13	2	1	329.056	0,000006078
14	BNL 14	1	28.189	329.056	0,08
15	BNL 15	3	2.535	329.056	0,02
16	BNL 16	0	27.467	329.056	0
17	BNL 17	1	9.547	329.056	0,02
18	BNL 18	3	16.641	329.056	0,15
	JUMLA	3,01			
	JUNILA	Kali/Pelanggan/Tahun			

Gambar 4.17 Grafik Nilai Indeks Keandalan SAIFI pada Gardu Induk 150 kV Bantul Tahun 2018

4.7.1. Analisis Nilai Keandalan SAIFI

Berdasarkan dari hasil perhitungan yang telah dilakukan yaitu pada tabel 4.8 yang menjelaskan data keandalan SAIFI pada Gardu Induk 150 kV Bantul selama tahun 2018 dapat diketahui bahwa selama tahun 2018 dapat dikatakan handal dikarenakan menurut standar SPLN No. 68-2: 1986 yakni sebesar 3,2 kali/pelanggan/tahun.

Selama tahun 2018 total frekuensi pemadaman pada Gardu Induk 150 kV Bantul adalah sebesar 3,01 kali/pelanggan/tahun. Sehingga selama tahun 2018 bisa dikatakan handal karena nilai keandalan SAIFI pada tahun tersebut tidak melebihi standar SPLN No. 68-2: 1986 yaitu sebesar 3,2 kali/pelanggan/tahun.

Berdasarkan standar IEEE std 1366-2003 yaitu sebesar 1,45 kali/pelanggan/tahun di Gardu Induk 150 kV Bantul selama tahun 2018 bisa dikatakan kurang handal dikarenakan nilai SAIFI Gardu Induk 150 kV Bantul sudah melebihi dari standar IEEE std 1366-2003 yakni sebesar 3,01 kali/pelanggan/tahun selama tahun 2018.

Selain itu, berdasarkan standar indeks keandalan WCS (*World Class Service*) dan WCC (*World Class Company*) yaitu sebesar 3 kali/pelanggan/tahun, Gardu Induk 150 kV Bantul dapat dikatakan kurang handal, karena nilai keandalan SAIFI pada Gardu Induk 150 kV Bantul melebihi dari standar nilai SAIFI pelayanan kelas dunia yaitu 3 kali/pelanggan/tahun.

Sedangkan, jika menghitung dari masing-masing penyulang yang terdapat pada Gardu Induk 150 kV Bantul dari 18 buah penyulang yang beroperasi selama tahun 2018, keseluruhan dari penyulang tersebut bisa dikatakan handal, yaitu di bawah 3,2 kali/pelanggan/tahun untuk standar SPLN No. 68-2: 1986, di bawah 1,45 kali/pelanggan/tahun untuk standar IEEE std 1366-2003 dan di bawah 3 kali/pelanggan/tahun untuk standar WCS (*World Class Service*) dan WCC (*World Class Company*).

Jika diperhatikan pada gambar 4.17 yaitu pada grafik nilai indeks SAIFI, puncak gangguan terjadi pada penyulang BNL 11 yakni sebesar 0,59 kali/pelanggan/tahun, ini bisa saja disebabkan oleh beberapa faktor misalnya gangguan hubung singkat, kerusakan pada alat, kerusakan pada pembangkit, terputusnya saluran/kabel karena cuaca yang buruk,pepohonan, kecerobohan atau kelalaian operator, kelebihan beban karena arus gangguan yang masuk ke sistem dan mengakibatkan sistem tidak normal, tegangan berlebih dengan frekuensi daya seperti kehilangan atau penurunan beban, dan hilangnya sumber tenaga.

Tabel 4.9 Perbandingan nilai SAIFI

No	Penyulang	Nilai SAIFI	SPLN SAIFI 3.2 (K/P/T)	IEEE SAIFI 1.45 (K/P/T)	WCS dan WCC SAIFI 3 (K/P/T)
1	BNL 01	0,35	✓	✓	✓
2	BNL 02	0,29	✓	✓	✓
3	BNL 03	0,17	✓	✓	✓
4	BNL 04	0,09	✓	✓	✓
5	BNL 05	0,08	✓	✓	✓
6	BNL 06	0,36	✓	✓	✓
7	BNL 07	0,19	✓	✓	✓
8	BNL 08	0,43	✓	√	✓
9	BNL 09	0,08	✓	✓	✓
10	BNL 10	0,003	✓	✓	✓
11	BNL 11	0,59	✓	✓	✓
12	BNL 12	0,11	✓	√	✓
13	BNL 13	0,000006078	✓	✓	✓
14	BNL 14	0,08	✓	✓	✓
15	BNL 15	0,02	✓	✓	✓
16	BNL 16	0	✓	✓	✓
17	BNL 17	0,02	✓	✓	✓
18	BNL 18	0,15	✓	✓	✓

Keterangan:

(K/P/T) = Kali / Pelanggan / Tahun

✓ = Memenuhi standar yang ditentukan

× = Tidak memenuhi standar yang ditentukan

4.8. Perhitungan dan Analisis Keandalan SAIDI pada Seluruh Penyulang

Rumus perhitungan yang digunakan untuk menghitung nilai keandalan SAIDI adalah sebagai berikut:

$$SAIDI = \frac{Perkalian\ Jam\ Pemadaman\ dan\ Pelanggan\ Padam}{Total\ jumlah\ pelanggan}$$

$$SAIDI = \frac{Ui.Ni}{N}$$

Dimana:

Ui = Durasi gangguan

Ni = Jumlah konsumen padam

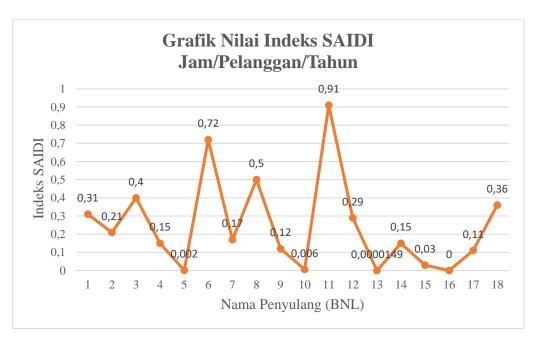
N = Jumlah total konsumen

Rumus perhitungan diatas, nanti akan di dimasukkan ke dalam bahasa pemrograman MATLAB, yang nantinya akan difungsikan sebagai kalkulator dengan menggunakan metode GUI (*Graphical User Interface*) yang ada pada MATLAB.

Contoh perhitungan nilai keandalan SAIDI per-penyulang pada Gardu Induk 150 kV Bantul ialah sebagai berikut:

1. **BNL 01** Tahun
$$2018 = \frac{5,33x19435}{329056} = 0,31481$$
 Jam/pelanggan/tahun

Berikut merupakan gambar dari perhitungan nilai keandalan SAIDI menggunakan bahasa pemrograman MATLAB.


	PROGRAM K	ALKULATOR MAT	TLAB STANDAR YAN	G DIGUNAKAN
KETERANGAN:	Input Ui	5.33	SPLN SAIFI	HANDAL
Lii\(\lambda\) = indeks kegagalan rata-rata/frekuensi padam per-tahun Ui = Durasi gangguan	Input Li		SPLN SAIDI	HANDAL
N = jumlah konsumen padam N = jumlah total konsumen	Input Ni	19435	IEEE SAIFI	HANDAL
N - Junian total Konsumen	Input N	329056	IEEE SAIDI	HANDAL
	Masukan Rumus	SAIDI ~	IEEE CAIDI	HANDAL
	Hasil	0.31481	WCS dan WCC SAIFI	HANDAL
	<u> </u>		WCS dan WCC SAIDI	HANDAL
MASUKANLAH VARIAB SAIDI = Ui , Ni , N SAIFI = Li , Ni , N CAIDI = Ui , Li , Ni	EL BERIKUT JIKA ING	IN MENGHITUNG RUM	Standar SPLN SAIFI = 3,2 k Standar SPLN SAIDI = 21,0 Standar IEEE SAIFI = 1,45 i Standar IEEE SAIDI = 2,30 Standar IEEE CAIDI = 1,47	19 jam/pelanggan/tahun kali/pelanggan/tahun jam/pelanggan/tahun jam/gangguan AIFI = 3 kali/pelanggan/tahun

Gambar 4.18 Contoh Perhitungan Nilai SAIDI pada Penyulang BNL 01 Tahun 2018

Agar memudahkan dalam hal pembacaan nilai keandalan SAIDI pada seluruh penyulang di Gardu Induk 150 kV Bantul selama tahun 2018, maka data hasil perhitungan dikelompokkan ke dalam tabel dengan rumus perhitungan sesuai dengan contoh di atas. Berikut adalah tebel hasil perhitungan nilai keandalan SAIDI pada seluruh penyulang di Gardu Induk 150 kV Bantul selama tahun 2018 menggunakan bahasa pemrograman MATLAB.

 $\bf Tabel~4.10$ Nilai SAIDI Seluruh Penyulang Pada Gardu Induk 150 kV Bantul Tahun 2018

No	PENYULANG	P	ARAME	TER	SAIDI
140	TENTULANG	Ui			Jam/Pelanggan/Tahun
1	BNL 01	5,33	19.435	329.056	0,31
2	BNL 02	7,34	9.645	329.056	0,21
3	BNL 03	6,77	19.614	329.056	0,40
4	BNL 04	4,86	10.383	329.056	0,15
5	BNL 05	0,03	26.967	329.056	0,002
6	BNL 06	5,99	39.697	329.056	0,72
7	BNL 07	2,63	21.564	329.056	0,17
8	BNL 08	8,14	20.336	329.056	0,50
9	BNL 09	7,51	5.536	329.056	0,12
10	BNL 10	3,51	612	329.056	0,006
11	BNL 11	9,23	32.504	329.056	0,91
12	BNL 12	2,53	38.383	329.056	0,29
13	BNL 13	4,91	1	329.056	0,0000149
14	BNL 14	1,86	28.189	329.056	0,15
15	BNL 15	4,37	2.535	329.056	0,03
16	BNL 16	0	27.467	329.056	0
17	BNL 17	3,81	9.547	329.056	0,11
18	BNL 18	7,29	16.641	329.056	0,36
	JUML	4,43			
	JUNIL	Jam/Pelanggan/Tahun			

Gambar 4.19 Grafik Nilai Indeks Keandalan SAIDI pada Gardu Induk 150 kV Bantul
Tahun 2018

4.8.1. Analisis Nilai Keandalan SAIDI

Berdasarkan hasil dari perhitungan yang telah dilakukan yaitu pada tabel 4.10 yang menjelaskan data keandalan SAIDI pada Gardu Induk 150 kV Bantul selama tahun 2018 dapat diketahui bahwa selama tahun 2018 dapat dikatakan handal sesuai dengan standar SPLN No. 68-2: 1986 yakni sebesar 21,09 jam/pelanggan/tahun.

Selama tahun 2018 total durasi pemadaman pada Gardu Induk 150 kV Bantul adalah sebesar 4,43 jam/pelanggan/tahun. Sehingga selama tahun 2018 dapat dikatakan handal karena nilai keandalan SAIDI selama tahun tersebut tidak melebihi standar SPLN No. 68-2: 1986 yaitu sebesar 21,09 jam/pelanggan/tahun.

Berdasarkan standar IEEE std 1366-2003 yaitu sebesar 2,30 jam/pelanggan/tahun, pada Gardu Induk 150 kV Bantul selama tahun tahun 2018 dapat dikatakan kurang handal dikarenakan nilai keandalan SAIDI pada Gardu Induk 150 kV Bantul melebihi dari standar IEEE std 1366-2003 yaitu sebesar 2,30 jam/pelanggan/tahun.

Salain itu, berdasarkan standar indeks keandalan WCS (World Class Service) dan WCC (World Class Company) yaitu sebesar 1,666 jam/pelanggan/tahun, Gardu Induk 150 kV Bantul dapat dikatakan kurang handal, karena nilai keandalan SAIDI pada Gardu Induk 150 kV Bantul lebih besar dari standar nilai pelayanan kelas dunia yaitu 1,666 kali/pelanggan/tahun.

Sedangkan, jika menghitung dari masing-masing penyulang yang terdapat pada Gardu Induk 150 kV Bantul dari total 18 penyulang yang beroperasi selama tahun 2018, dari keseluruhan penyulang tersebut dapat dikatakan handal untuk semua penyulangnya yaitu di bawah 21,09 jam/pelanggan/tahun untuk standar SPLN No. 68-2: 1986, di bawah 2,30 jam/pelanggan/tahun untuk standar IEEE std 1366-2003 dan juga di bawah 1,666 jam/pelanggan/tahun untuk standar WCS (World Class Service) dan WCC (World Class Company).

Jika diperhatikan pada gambar 4.19 yaitu pada grafik nilai indeks SAIDI, puncak gangguan terjadi pada penyulang BNL 11 yakni sebesar 0,91 jam/pelanggan/tahun, ini bisa saja disebabkan oleh beberapa faktor misalnya gangguan hubung singkat, kerusakan pada alat, kerusakan pada pembangkit, terputusnya saluran/kabel karena cuaca yang buruk,pepohonan, kecerobohan atau kelalaian operator, kelebihan beban karena arus gangguan yang masuk ke sistem dan mengakibatkan sistem tidak normal, tegangan berlebih dengan frekuensi daya seperti kehilangan atau penurunan beban, dan hilangnya sumber tenaga.

Tabel 4.11 Perbandingan nilai SAIDI

			SPLN	IEEE	WCS dan WCC
No	Penyulang	Nilai	SAIDI	SAIDI	SAIDI
110	renymang	SAIDI	21.09	2.30	1.666
			(J/P/T)	(J/P/T)	(J/P/T)
1	BNL 01	0,31	✓	✓	✓
2	BNL 02	0,21	✓	✓	✓
3	BNL 03	0,40	✓	✓	✓
4	BNL 04	0,15	✓	✓	✓
5	BNL 05	0,002	✓	✓	✓
6	BNL 06	0,72	✓	✓	✓
7	BNL 07	0,17	✓	✓	✓
8	BNL 08	0,50	✓	✓	✓
9	BNL 09	0,12	✓	✓	✓
10	BNL 10	0,006	✓	✓	✓
11	BNL 11	0,91	✓	✓	✓
12	BNL 12	0,29	✓	✓	✓
13	BNL 13	0,0000149	✓	✓	✓
14	BNL 14	0,15	✓	✓	✓
15	BNL 15	0,03	✓	✓	✓
16	BNL 16	0	✓	✓	✓
17	BNL 17	0,11	✓	✓	✓
18	BNL 18	0,36	✓	✓	✓

Keterangan:

(J/P/T) = Jam / Pelanggan / Tahun

✓ = Memenuhi standar yang ditentukan

× = Tidak memenuhi standar yang ditentukan

4.9. Perhitungan dan Analisis Keandalan CAIDI pada Seluruh Penyulang

Rumus perhitungan yang digunakan untuk menghitung nilai keandalan CAIDI adalah sebagai berikut:

$$\text{CAIDI} = \frac{Jumlah \ Durasi \ Gangguan \ Pelanggan}{jumlah \ Interupsi \ pelanggan} = \frac{\sum Ui.Ni}{\sum Ni.\lambda i}$$

Dimana:

Ui = Durasi gangguan

Ni = Jumlah konsumen padam

Li/λi = Indeks kegagalan rata-rata/frekuensi padam per-tahun

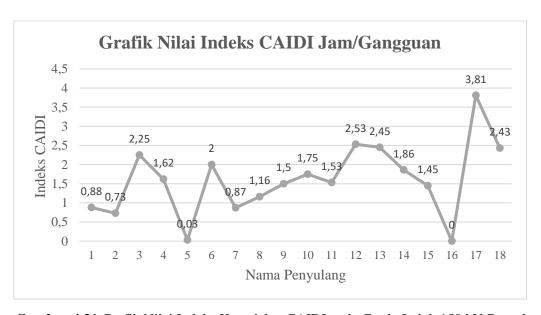
Rumus perhitungan diatas, nanti akan di dimasukkan ke dalam bahasa pemrograman MATLAB, yang nantinya akan difungsikan sebagai kalkulator dengan menggunakan metode GUI (*Graphical User Interface*) yang ada pada MATLAB.

Contoh perhitungan nilai keandalan CAIDI di seluruh penyulang pada Gardu Induk 150 kV Bantul sebagai berikut:

1. **BNL 01** Tahun 2018 =
$$\frac{5,33x19435}{6x19435}$$
 = 0,88833 jam/gangguan

Berikut merupakan gambar dari perhitungan nilai keandalan CAIDI menggunakan bahasa pemrograman MATLAB.

	PROGRAM K	CALKULATOR MATLAB	STANDAR YANG	DIGUNAKAN
KETERANGAN :	Input Ui	5.33	SPLN SAIFI	HANDAL
Li/Ai = indeks kegagalan rata-rata/frekuensi padam per-tahun Ui = Durasi gangguan	Input Li	6	SPLN SAIDI	HANDAL
Ni = jumlah konsumen padam N = jumlah total konsumen	Input Ni	19435	IEEE SAIFI	HANDAL
T - jaman out tonsamen	Input N		IEEE SAIDI	HANDAL
	Masukan Rumus	CAIDI	IEEE CAIDI	HANDAL
	Hasil	0.88833	WCS dan WCC SAIFI	HANDAL
	L		WCS dan WCC SAIDI	HANDAL
SAIDI = Ui , Ni , N	BEL BERIKUT JIKA ING	BIN MENGHITUNG RUMUS :	KATEGORI STANDAR : Standar SPLN SAIFI = 3,2 ka Standar SPLN SAIDI = 21,09	
SAIFI = Li , Ni , N			Standar IEEE SAIFI = 1,45 ka	, 00
CAIDI = Ui , Li , Ni			Standar IEEE SAIDI = 2,30 ja Standar IEEE CAIDI = 1,47 ja	
			Standar WCS dan WCC SAIDI =	


Gambar 4.20 Contoh Perhitungan Nilai CAIDI pada Penyulang BNL 01 Tahun 2018

Agar dimudahkan dalam hal pembacaan nilai keandalan CAIDI pada seluruh penyulang di Gardu Induk 150 kV Bantul selama tahun 2018, jadi data hasil dari perhitungan akan dikelompokkan ke dalam tabel dengan rumus perhitungan sesuai dengan contoh di atas. Berikut merupakan tabel dari hasil perhitungan nilai keandalan CAIDI pada seluruh penyulang di Gardu Induk 150 kV Bantul selama tahun 2018 menggunakan bahasa pemrograman MATLAB.

Tabel 4.12 Nilai CAIDI Seluruh Penyulang Pada Gardu Induk 150 kV Bantul Tahun 2018

No	PENYULANG	PA	ARAMETI	CAIDI	
110	TENTOLANG	Ui	Ni	λί	Jam/Gangguan
1	BNL 01	5,33	19.435	6	0,88
2	BNL 02	7,34	9.645	10	0,73
3	BNL 03	6,77	19.614	3	2,25
4	BNL 04	4,86	10.383	3	1,62
5	BNL 05	0,03	26.967	1	0,03
6	BNL 06	5,99	39.697	3	2
7	BNL 07	2,63	21.564	3	0,87
8	BNL 08	8,14	20.336	7	1,16

	Total Ni	28,85 Jam/Gangguan			
18	BNL 18	7,29	16.641	3	2,43
17	BNL 17	3,81	9.547	1	3,81
16	BNL 16	0	27.467	0	0
15	BNL 15	4,37	2.535	3	1,45
14	BNL 14	1,86	28.189	1	1,86
13	BNL 13	4,91	1	2	2,45
12	BNL 12	2,53	38.383	1	2,53
11	BNL 11	9,23	32.504	6	1,53
10	BNL 10	3,51	612	2	1,75
9	BNL 09	7,51	5.536	5	1,5

Gambar 4.21 Grafik Nilai Indeks Keandalan CAIDI pada Gardu Induk 150 kV Bantul Tahun 2018

4.9.1. Analisis Nilai Keandalan CAIDI

Berdasarkan hasil dari perhitungan yang telah dilakukan diatas yaitu pada tabel 4.12 yang menjelaskan data tentang nilai keandalan CAIDI pada Gardu Induk 150 kV Bantul selama tahun 2018, dapat diketahui bahwa Selama tahun 2018 total durasi pemadaman pada pelanggan di Gardu Induk 150 kV Bantul ialah sebesar 28,85 jam/tahun, sehingga selama tahun 2018 bisa dikatakan kurang handal menurut standar IEEE std 1366-2003. Hal ini dikarenakan nilai keandalan CAIDI pada tahun tersebut sudah melebihi dari standar IEEE std 1366-2003 yaitu sebesar 1,47 jam/tahun.

Sedangkan, jika menghitung dari masing-masing penyulang yang terdapat pada Gardu Induk 150 kV Bantul dari total 18 buah penyulang yang beroperasi selama tahun 2018, dari keseluruhan penyulang tersebut terdapat 7 buah penyulang yang masuk dalam kategori handal yaitu di bawah 1,47 jam/tahun menurut standar IEEE std 1366-2003. Namun dari total 18 buah penyulang tersebut yang beroperasi selama tahun 2018 terdapat 11 buah penyulang yang melebihi standar IEEE std 1366-2003 dan bisa dikatakan kurang handal dikarenakan nilai keandalan CAIDI pada penyulang tersebut adalah masing-masing sebesar 1,5 jam/gangguan, 1,53 jam/gangguan, 1,62 jam/gangguan, 1,75 jam/gangguan, 1,86 jam/gangguan, 2 jam/gangguan, 2,53 jam/gangguan, 2,43 jam/gangguan, 2,45 jam/gangguan, 2,53 jam/gangguan, dan 3,81 jam/gangguan.

Jika diperhatikan pada gambar 4.19 yaitu pada grafik nilai indeks SAIDI, puncak gangguan terjadi pada penyulang BNL 17 yakni sebesar 3,81 jam/gangguan, ini bisa saja disebabkan oleh beberapa faktor misalnya gangguan hubung singkat, kerusakan pada alat, kerusakan pada pembangkit, terputusnya saluran/kabel karena cuaca yang buruk,pepohonan, kecerobohan atau kelalaian operator, kelebihan beban karena arus gangguan yang masuk ke sistem dan mengakibatkan sistem tidak normal, tegangan berlebih dengan frekuensi daya seperti kehilangan atau penurunan beban, dan hilangnya sumber tenaga.

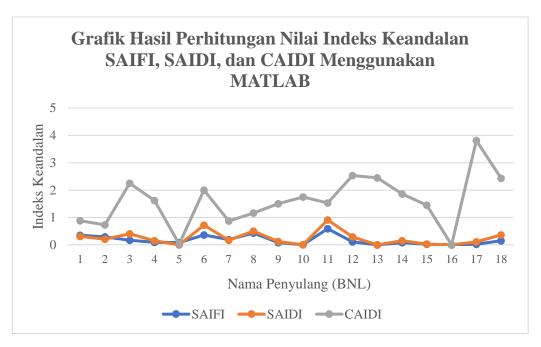
Tabel 4.13 Perbandingan nilai CAIDI

			IEEE
No	Penyulang	Nilai	CAIDI
110	1 chyulang	CAIDI	1.47
			(J / G)
1	BNL 01	0,88	✓
2	BNL 02	0,73	√
3	BNL 03	2,25	×
4	BNL 04	1,62	×
5	BNL 05	0,03	✓
6	BNL 06	2	×
7	BNL 07	0,87	√
8	BNL 08	1,16	√
9	BNL 09	1,5	×
10	BNL 10	1,75	×
11	BNL 11	1,53	×
12	BNL 12	2,53	×
13	BNL 13	2,45	×
14	BNL 14	1,86	×
15	BNL 15	1.45	✓
16	BNL 16	0	✓
17	BNL 17	3.81	×
18	BNL 18	2,43	×

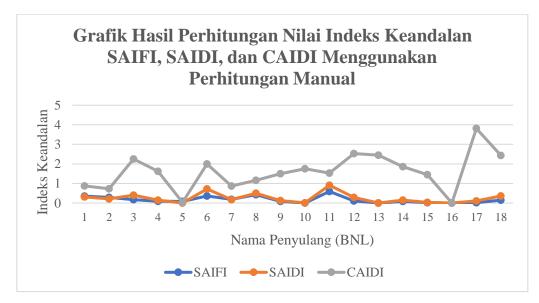
Keterangan:

(J/G) = Jam / Gangguan

✓ = Memenuhi standar yang ditentukan


× = Tidak memenuhi standar yang ditentukan

4.10. Perbandingan Hasil Perhitungan


Perbandingan hasil perhitungan diperlukan untuk mengetahui bahwa aplikasi yang dibuat atau dirancang hasilnya akurat. Jika aplikasi yang dibuat hasilnya sama dengan perhitungan dengan cara *manual* maka aplikasi ini dapat dikatakan berhasil dan layak digunakan untuk membantu PT. PLN dalam melakukan perhitungan tingkat keandalan suatu sistem distribusi. Untuk mengetahui tingkat keakuratan dari aplikasi ini digunakan 2 cara perhitungan yaitu perhitungan secara *manual* dan perhitungan yang dilakukan oleh aplikasi ini.

Tabel 4.14 Perbandingan Hasil Perhitungan Cara Manual dan Aplikasi

No	Perhitungan Secara Manual		Perhitung	Perhitungan dengan Aplikasi			
140	SAIFI	SAIDI	CAIDI	SAIFI	SAIDI	CAIDI	Keterangan
1	0,35	0,31	0,88	0,35	0,31	0,88	Akurat
2	0,29	0,21	0,73	0,29	0,21	0,73	Akurat
3	0,17	0,40	2,25	0,17	0,40	2,25	Akurat
4	0,09	0,15	1,62	0,09	0,15	1,62	Akurat
5	0,08	0,002	0,03	0,08	0,002	0,03	Akurat
6	0,36	0,72	2	0,36	0,72	2	Akurat
7	0,19	0,17	0,87	0,19	0,17	0,87	Akurat
8	0,43	0,50	1,16	0,43	0,50	1,16	Akurat
9	0,08	0,12	1,5	0,08	0,12	1,5	Akurat
10	0,003	0,006	1,75	0,003	0,006	1,75	Akurat
11	0,59	0,91	1,53	0,59	0,91	1,53	Akurat
12	0,11	0,29	2,53	0,11	0,29	2,53	Akurat
13	0,000006078	0,0000149	2,45	0,000006078	0,0000149	2,45	Akurat
14	0,08	0,15	1,86	0,08	0,15	1,86	Akurat
15	0,02	0,03	1,45	0,02	0,03	1,45	Akurat
16	0	0	0	0	0	0	Akurat
17	0,02	0,11	3,81	0,02	0,11	3,81	Akurat
18	0,15	0,36	2,43	0,15	0,36	2,43	Akurat

Gambar 4.22 Grafik Hasil Perhitungan Nilai Indeks Keandalan SAIFI, SAIDI, dan CAIDI Dengan Menggunakan MATLAB

Gambar 4.23 Grafik Hasil Perhitungan Nilai Indeks Keandalan SAIFI, SAIDI, dan CAIDI Dengan Perhitungan Manual