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Abstract. The characterization of fabricated porous [ titanium alloy using powder metallurgy
technique from elemental powders, i.e. Ti, Nb, Ta and Zr has been carried out. Those elemental
powders were blended and filled in steel container. The container was vacuumed and
pressurized with argon gas subsequently. The pressurized container was subjected for hot
isostatic pressing (HIP-ing) at temperature of 1100°C under 100 MPa of argon pressure
subsequent furnace cooling. The HIP-ed container was cut into cubic shape followed by
placing in vacuum furnace at high temperatures of 1100°C and 1125°C for foaming process.
While microstructure and hardness examination by electron microscope and Vickers
indentation were respectively conducted, chemical composition of the porous alloy was
determined using X-ray fluorescence (XRF). Their corrosion behavior was evaluated by using
potentiodynamic polarization technique. The result shows that whilst the porosity level and the
hardness increased with the increase of foaming temperature, the specimen foamed at the lower
temperature exhibited higher pitting and corrosion resistance.

1. Introduction

Titantum and its alloys are widely used for many applications because of their advantages such as high
specific strength and excellent corrosion resistance. Metal in porous structure demonstrates significant
advantages for examples low density and novel acoustic, physical, electrical, thermal. and mechanical
properties. Due to high melting point (1670°C) and high reactivity of pure titanium, some fabrication
techniques in solid route have referred to produce porous titanium alloys [ 1-3] compared to the melting
route. From those, the argon filled pore expansion technique exhibits no contamination and porosity
c.a. 40% in closed pore structure.

Whilst pure titanium powder or prealloyed titanium alloy powder are commonly used as starting
material, the use of elemental powder which lowers in cost is rarely reported. Titanium alloying
elements: Ti. Zr, Nb and Ta have been reported showing excellent biocompatibility, lowering the
Young’s modulus and also possessing a considerably superior corrosion resistance. This paper presents
the characterization of fabricated porous titanium alloy based on the pressurized argon pore expansion
process by powder metallurgy technique using the elemental powders.
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2. Methodology

Ti, Nb, Ta and Zr elemental powders in angular shape with the purity and size of the elemental
powders being > 99.5% and < 44 pm, respectively were supplied from Cerac Inc.The powders were
weighed in accordance to a desired composition of Ti-29Nb-13Ta-4.5Zr. and were then mixed for 30
minutes in a roller bottle mixer at 50 rpm. While figure 1(a) depicts the morphologies of the elemental
powders after the mixing process, figure 1(b) presents their energy spectra from Energy Dispersive
Spectrometer (EDS) measurement.
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Figure 1. Morphologies of the mixed powder from backscattered scanning electron micrograph (a) the
energy spectres from EDS measurement (b).

Afterward, the mixed powder was filled in 30 mm diameter steel containers. The containers were
vacuumed and pressurized with argon gas at 0.68 MPa and air tighten by welding subsequently. The
pressurized containers were put in hot isostatic press (HIP) machine and heated up at temperature of
1100°C for 1 hours under 100 MPa of argon pressure and slow cooled resulting high pressure argon
entrapped in titanium matrix. The [TIP-ed billet were cut to cubical shape with dimensions of 10 x 10 x
10 mm by wire electrical discharge machining (WEDM). The cube specimens were then placed in a
vacuum furnace for expansion of the pressurized argon or foaming process at 1100° and 1225° for 10
hours. An optical microscopy and an electron microscopy-coupled by EDS were used to examine
morphology and microstructure of the prepared foamed specimens. Quantitative analysis of the alloy
constituent and fraction porosity were determined using a XRF and open source software digital image
analyzer (Imagel) respectively. Microvickers hardness testing was carried out to reveal hardness
values of the porous alloy. Their corrosion behavior was evaluated by open-circuit potential (OCP)
and potentiodynamic polarization measurements.

3. Results and discussion

Figure 2 depicted the comparison between a polished HIP-ed specimen and as-foamed specimens
before evaluation. The foamed specimens showed darker surface due to pores formed. Generally, the
pores expanded in a uniform manner and the extent of pore expansion was determined by the foaming
condition. It can be clearly observed that the dimensional changed after foaming process. Foaming at
higher temperature appeared in larger side length. This may reflect that porosity level of the foamed
specimen at higher temperature (1225°C) is higher than that of the lower one (1100°C).

Barreling shape of the foamed specimen was also noted in which the length of the edge of the
foamed specimen was found slightly shorter than that of the middle because of the higher expansion of
pressurized argon in metal matrix in the middle. After sectioning by WEDM, surface damage layer of
the foamed specimen was removed and polished subsequently. The prepared specimens were then
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examined for pore morphology and pore size. The examination area mostly near to the specimen
center, otherwise it would be specifically stated.

10 mm

Figure 2. The comparison of foamed titanium alloy specimen at temperature of 1225°C (a), 1100°C
(b) and polished HIP-ed billet (c).

The foaming process at 1100°C for 10 hours with pressurized argon gas of 0.68 MPa resulted in

porosity level in the range of 10.7-14.5%, while that of 1225°C reached higher porosity level in the
range of 21.8-27.0% as shown in figure 3(a).
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Figure 3. The extent of porosity attained for the specimens being foamed at 1100°C and 1225°C (a),
secondary electron microscope image presenting morphology of the pore of a specimen being foamed

at 1100°C/0.68 MPa/10 hours with porosity of 10.7% (b) and a specimen being foamed at 1225°C/0.68
MPa/10 hours with porosity of 21.6% (c).

Figure 3(b) shows a typical microstructure depicting pore morphology of a specimen being foamed
at 1100°C/0.68 MPa/10 hours. The image also illustrates that a low porosity (10.7%) of porous
titanium alloy was obtained by the foaming process. At the porosity level, the pores were distributed
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gnevenly in the specimen with very small number of pore coalescence and the pores being very
discrete.

Equiaxed pore shape was mainly observed with probably in 3 dimensions being spherical in shape
as depicted by the inset picture. On the other hand. un spherical pore shape (angular) presumably
being formed from the expanded interpowder-spacings were also observed.

The extent of porosity is considered equal to past report researches on other porous titanium alloys
which stated the porosity of around 12% [4]. In those researches, porous titanium alloys were
developed by means of pre-alloyed master powders heated up at 12000C and held for 10 hours. The
pressurized pores of the specimen foamed at 1225°C expanded more obvious because of the metal
matrix creeping resulting in specimen with porosity of 21.6% as illustrated in figure 3(b). Morphology
of the pores mostly stayed discrete, with more number of pore coalescence being observable (see the
inset) than that of the specimen foamed at 1100°C. The enhancing pore connectivity becomes
noticeable as well.

In addition, more uniform pore expansion in specimens being fabricated by foaming temperature at
1225°C was found as appeared in figure 4. Since fewer constrain being present, the pores in the area
near to surface of the specimen demonstrated higher expansion level than that of the deeper one
resulting a raise in porosity level. Yet, pores with thick in wall and discrete in structure were still
observed. The number of pore coalescence just increase very slight. In those regards, the pores were
still categorized as closed pores. However, some pores had coalesced and connected to the surface of
specimen subsequently escaping pressurized argon gas to the atmosphere (see the arrow in figure 4).

The creep deformation that increase with higher foaming temperature was found to attribute the
increase of porosity level. Pore morphologies were confirmed in equiaxed shape and elongated shape
because of pore coalescence with in general the pore walls remaining thick and the pore connectivity
frequently being visible. Therefore, generally, the foaming temperature clearly affects the extent of
porosity of the foamed titanium alloys.

Figure 4. Optical microscope image of the area near to the surface of specimen being foamed at
1225°C showing a relatively uniform pore expansion.

Three specimens were examined by using a XRF to obtain the alloy composition. An XRF spectra
of the selected sample is shown in figure 5. The typical chemical composition of Ti, Nb, Ta, Zr and
others in the alloy are of 49.6+3.13%, 30.6+2.14%, 13.47+1.47%, 5.97+0.62% and 0.36+0.22
respectively. Whilst this result indicated that the chemical composition of the fabricated alloy is
comparable to that of the elemental powders, other elements were detected which may due
contamination during alloy processing and samples preparation.
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Figure 5. XRF spectra of the titanium alloy.

The hardness testing was conducted on polished specimen surface by means of microvickers
hardness testing machine. A load of 100 g was used to carry out the experiment. Figure 6 illustrated
the relation between foaming temperature and hardness. Figure 6 presents an increasing foaming
temperature increased the hardness.

As expected, the hardness increase with the increase of foaming temperature due to the increase of
fraction of a—phase which has higher Young's modulus than that of p—phase as previously revealed
[5]. At the higher foaming temperature, fraction of the o-phase rapidly grew rather than that of [3-
phase resulting in the closer the fraction of the both phases. This allows higher opportunity to obtain
individual hardness values of the phases presenting a higher scattered hardness values. In contrast, the
specimen being foamed at 1100°C showed a smaller scattered and lower values of hardness value that
of at 1225°C. The narrower difference of the hardness for the lower temperature may be suggested by
the evident that higher fraction of p-phase was produced by foaming at the lower temperature, Thus,
foaming temperature at 1100°C resulted in more homogenous in B—phase than the other. The porous
titanium alloy being fabricated consisting of high fraction of [-phase shows hardness which is
comparable to the hardness of various biomedical titanium alloys reported in the range of 300-400 HV
[6-8].
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Figure 6. Hardness values of specimen foamed at 1100°C and 1225°C.
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% the research, corrosion behavior was assessed using open circuit potential (OCP) method. The
OCP measures passivation and layer development of the alloy that occurs in a solution. In addition,
potentiodynamic polarization testing was used to identify electrochemical behavior of the material in
certain environment. The OCP measurement method's results can be seen in figure 7.
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Figure 7. The relation of time to the potential during the OCP measurement in Hank’s solution at
37°C of the specimens foamed at 1100°C and 1225°C.

As seen m figure 7, the OCP measurement as a function of time for foaming temperature at 1100°C
and 1225°C of the porous alloys. These results can be relatively easy to be reproduced, and all of the
curves runs in similar way to each other, in addition to being comparable. Initially, there is a minor
upsurge of potential in the first few minutes, followed by a constant rise towards noble direction
before becoming steady. The specimen foamed at 1225°C showed the initial E.or of 533 mV. It
experienced a moderate increase in increment rate which reached -406 mV after an hour. In addition,
the initial corrosion potential (Ecor) for the specimen that foamed at 1100°C was found of -380 mV
and moderately increase to -232 mV after an hour. The latter specimen had more noble potentials than
the former specimen. This increase of potential in the positive way is an indication of a passive film
forming, while the steady state implies the film being intact and protective. This signifies a
competition between film dissolution and formation, which results in a potential indicating the
thickness of surface film and its self-healing properties. The potential variation rate which signifies the
formation of oxide was high after a few minutes of immersion, decreasing over time before reaching a
steady state.

The potentiodynamic polarization curves for the both foaming temperatures measured in Hank’s
Solution at 37°C are presented in figure 8. The E... varied from -445 to -365 mV. This difference
among those may be caused by the differing surface condition [9], even though the specimens’
preparations used the same procedure.

The corrosion current densities (ic.on) Were resulted from the polarization’s curves by the Tafel
extrapolation technique. The breakdown potentials of specimens foamed at 1225°C was of 899 mV.
Comparatively, the other specimen which foamed at 1100°C showed neither potential for breakdown
nor hysteresis loop (figure 8).

This reveals that the latter specimen has a higher resistance to pitting and crevice corrosion because
of its composition, which predominantly comprised the [} phase previously reported higher corrosion
resistance. In addition, material with higher porosity was also stated susceptibility to crevice corrosion
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[10]. Yet, their icor and Ecor in Hank’s solution at 37°C could be compared to those of solid CP Ti, Ti
6AL4V.
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Figure 8. Potentiodynamic polarization curves for specimens foamed at 1100°C and 1225°C in Hank’s

4.

solution at 37°C.

Conclusion

It can be concluded that the porosity level and the hardness increased with the increase of foaming
temperature (1100°C and 1225°C) achieving 26.7% and 417mV respectively. The specimen foamed at
the lower temperature exhibited higher pitting and corrosion resistance.
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