SISTEM UMPAN BALIK KENDALI *CLOSE LOOP* ANTENA PENJEJAK DUA AXIS

TUGAS AKHIR

Diajukan guna Memenuhi Persyaratan untuk Mencapai Derajat Strata-1 Prodi Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Yogyakarta

Disusun oleh:

RARA DWI OKTAVIANI 20150120148

PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH YOGYAKARTA 2019

HALAMAN PERNYATAAN

Yang bertanda tangan dibawah ini:

Nama

: Rara Dwi Oktaviani

NIM

: 20150120148

Jurusan

: Teknik Elektro

Fakultas

: Teknik

Universitas

: Universitas Muhammadiyah Yogyakarta

Menyatakan dengan sesungguhnya bahwa naskah skripsi "SISTEM UMPAN BALIK KENDALI CLOSE LOOP ANTENA PENJEJAK DUA AXIS" merupakan hasil karya tulis saya sendiri dan tidak terdapat karya yang pernah diajukan untuk memperoleh gelar kesarjanaan di Perguruan Tinggi dan sepanjang pengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau dipublikasikan oleh orang lain, kecuali yang secara tertulis disebutkan sumbernya dalam naskah dan daftar pustaka denagn mengikuti tata cara dan etika penulisan karya tulis.

Yogyakarta, Januari 2019

Penulis,

6000 ENAM RIBURUPIAH

Rara Dwi Oktaviani

HALAMAN PERSEMBAHAN

Skripsi ini saya persembahkan untuk Allah SWT, kedua orangtua serta kakakadik saya, keluarga saya, semua sahabat saya dan semua orang yang telah memberikan bantuan dan dukungan selama penelitian ini.

MOTTO

Artinya, "Dan Tuhanmu telah memerintahkan supaya kamu jangan menyembah selain Dia dan hendaklah kamu berbuat baik pada ibu bapakmu dengan sebaikbaiknya." (Al-Isra': 23)

فَباَى الآءِ رَبِّكُمَا تُكَذِّبن

Maka nikmat Tuhanmu yang manakah yang kamu dustakan? (Ar-Rahman :13)

Menyia-nyiakan waktu lebih buruk dari kematian karena kematian memisahkanmu dari dunia sementara, menyia-nyiakan waktu memisahkanmu dari Allah.

(Imam bin Al Qayim)

Sesungguhnya bersama kesulitan ada kemudahan .Maka apabila engkau telah selesai [dari sesuatu urusan], tetaplah bekerja keras [untuk urusan yang lain]

Dan hanya kepada tuhan mulah engkau berharap.

(Al-Insyirah:6-8)

KATA PENGANTAR

Bissmillahirrahmanirrahim. Puji syukur atas kehadirat Allah SWT yang Maha Pengasih dan Penyayang yang memberikan nikmat dan karunianya kepada hamba-Nya sehingga penyusunan skripsi dengan judul SISTEM UMPAN BALIK KENDALI CLOSE LOOP ANTENA PENJEJAK DUA AXIS dapat terselesaikan dengan baik. Sholawat serta salam selalu juga dihaturkan kepada Nabi Muhammad Sallallahu 'Alaihi Wasallam, yang telah membawa kita menuju jalan kebenaran dari jaman jahiliah hingga jaman yang terang benderang seperti ini.

Dalam penyusunan skripsi ini, penulis banyak mendapatkan bantuan dan dukungan yang membangun dari berbagai pihak, mulai dari persiapan hingga skripsi ini selesai dikerjakan. Maka dari itu, penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

- 1. Allah Subhanahu Wa Ta'ala yang telah memberikan segala keberkahan, dan nikmat sehat sehingga bisa menyelsaikan skripsi ini dengan lancar.
- 2. Nabi Muhammad Sallallahu 'Alaihi Wasallam yang merupakan teladan yang baik untuk kita sebagai manusia.
- 3. Kedua orang tua, mama dan papa yang saya cintai senantiasa memberikan dukungan dan do'a setiap waktu.
- 4. Kedua saudara saya, *ma grande soeur* Silfia yang selalu memberikan dukungan dari bogor dan *ma petite soeur* cici .
- 5. Dr. Ramadoni Syahputra,S.T.,M.T. selaku kepala jurusan Teknik Elektro Universitas Muhammadiyah Yogyakarta yang selalu mendukung mahasiswa/I Teknik Elektro dalam bidang yang positif.
- 6. Bapak Rama Okta Wiyagi, S.T.,M.Eng selaku Dosen pembimbing I yang selalu mendukung penuh dimanapun dan kapanpun untuk memberikan ilmu skripsi ini.

- 7. Yudhi Ardiyanto, ST.,M.Eng.selaku dosen pembimbing II yang selalu mendukung saya saat menjalani pembuatan skripsi ini.
- 8. Muhamad Yusvin Mustar, S.T., M.Eng selaku dosen penguji saat sidang pendadaran.
- 9. Bapak Indri, Bapak Wastik, dan Bapak Nurhidayat yang merupakan staff Laboratorium Teknik Elektro UMY yang sangat berkontribusi dalam terselenggaranya semua praktikum di Teknik Elektro UMY.
- 10. Seluruh dosen Teknik Elektro UMY.
- 11. Staff referensi Teknik yang telah membantu saya dalam Teknik penulisan skripsi ini.
- 12. Keluarga kedua saya "Test Base Signal" Ratna, Arifah, Ega, Doane, Emya, Sekar, yang senantiasa memberikan semangat dan bantuan pengambilan data untuk skripsi ini.
- 13. Teman-teman *volunteer* AC-WP dan sir puthut yang selalu memberikan semangat dan ilmu baru
- 14. Teman-teman MRC yang selalu membantu saya dalam pembuatan alat skripsi saya.
- 15. Mba Nova selaku teman seperjuangan skripsi saya yang memberikan semangat dalam mengerjakan skripsi.
- 16. Teman-teman kelas C, ciwi elektro dan adik-adik KMTE yang memberikan semangat saat mengerjakan skripsi ini.
- 17. Seseorang yang selalu mendukung dan memberikan semangat dari jauh untuk pembuatan skripsi ini.
- 18. Seluruh mahasiswa Teknik Elektro UMY.
- 19. Semua yang sudah mendukung secara langsung maupun tidak langsung.

 \mathbf{X}

Dengan segala keterbatasan, penulis menyadari bahwa masih banyak

kekurangan dalam penyusunan tugas akhir ini. Saran dan kritik yang membangun

dari semua pihak sangat penulis harapkan demi perbaikan dan peningkatan skripsi

ini.

Akhirnya penulis berharap dengan dibuatnya tugas akhir ini, semoga dapat

bermanfaat bagi orang lain.

Yogyakarta, 30 Januari 2019

Penulis

DAFTAR ISI

COVER	i
HALAMAN PENGESAHAN I	iii
HALAMAN PENGESAHAN II	
SISTEM UMPAN BALIK KENDALI CLOSE LOOP ANTENA PER DUA AXIS	
HALAMAN PERNYATAAN	v
HALAMAN PERSEMBAHAN	
MOTTO	vii
KATA PENGANTAR	viii
INTISARI	
ABSTRACT	
DAFTAR ISI	xiii
DAFTAR TABEL	xvi
DAFTAR GAMBAR	
BAB I	1
PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan	2
1.4 Batasan Masalah	3
1.5 Manfaat	3
1.6 Sistematika Penulisan	3
ВАВ П	5
TINJAUAN PUSTAKA	5
2.1 Kajian Pustaka	5
2.2 Dasar Teori	7
2.2.1 Antenna tracker	7
2.2.2 Sistem Kendali	9
2.2.3 Elevasi dan Azimuth	11
2.2.4 Protokol Komunikasi Data dan Antarumika Serial	13

2.2.5 Komponen sensor prosessing	17
BAB III	23
METODOLOGI PENELITIAN	23
3.1 Waktu dan Tempat Penelitian	23
3.2 Alat dan Bahan	
3.3 Diagram Alir Penelitian	24
	24
3.3.1 Penjelasan Diagram Alir Penelitian	25
3.4 Perancangan Alat Sistem Umpan Balik	27
3.4.1 Deskripsi Sistem Perancangan	27
3.4.2 Rancangan Perangkat Keras	28
3.4.3 Perancangan perangkat lunak	38
3.5 Tahapan Perilaku Pengujian	50
3.5 l Perilaku Pengujian LCD dan Mikrokontroler	50
3.5.2 Perilaku Pengujian Regulator Step Down	51
3.5.3 Perilaku Pengujian DC-DC Converter step up XL6009	51
3.5.4 Perilaku Pengujian Rangkaian Level Shifter	52
3.5.5 Perilaku Pengujian Sensor Autonics EP50S8-1024-2F-N-24	53
3.5.6 Perilaku Pengujian Sensor HMC5833 L	54
3.5.7 Pengujian pengiriman serial RS485	55
3.6 Pemasangan Sistem Umpan Balik pada Antena Controller Dua-Axis	56
BAB IV	61
HASIL PENELITIAN DAN PEMBAHASAN	61
4.1 Pengujian LCD	61
4.2 Pengujian Regulator Step Down	62
4.3 Pengujian DC-DC Converter Step Up	62
4.4 Pengujian Rangkaian Level Shifter	
4.5 Pengujian Sensor Elevasi EP50S8-1024-2F-N-24	67
4.5.1 Pengujian Sensor EP50S8-1024-2F-N-24	67
4.5.2 Pengujian Sudut Sensor Elevasi sensor EP50S8-1024-2F-N-24	71
4.6 Pengujian Sensor Sudut Azimuth	75
4.6.1 Pengujian arah utara sensor HMC 5833L	75

4.6.2 Pengujian Data Sensor HMC5883L Sebelum dikalibrasi	76
4.6.3 Pengujian Sensor Kompas setelah dikalibrasi	80
4.7 Pengujian Pengiriman Data Serial Sudut Elevasi dan Azimuth	85
4.8 Pengujian Pengiriman Data Serial GPS	86
4.9 Peletakan Elemen Umpan Balik pada Antena Penjejak Dua Axis	87
4.9.2 Peletakan Elemen Umpan Balik Sensor Azimuth	88
BAB V	89
PENUTUP	89
5.1 Kesimpulan	89
5.2 Saran	90
DAFTAR DUSTANA	01

DAFTAR TABEL

Tabel 2. 2 Perhitungan Sudut Azimut	13
Tabel 2. 3 Spesifikasi Arduino Mega 2560	17
Tabel 2. 4 Spesifikasi HMC5883L	200
Tabel 2. 5 Sistem Pengkabelan	21
Tabel 3. 1 Alat dan Bahan	23
Tabel 3. 2 Compass Header	40
Tabel 3. 3 variabel global	
Tabel 3. 4 int select pada compass_offset_calibration	
Tabel 3. 5 Nilai input 0-7 int gain	
Tabel 3. 6 Rumus Perhitungan Resolusi Sensor & Elevasi	46
Tabel 3. 7 Program Lengkap Sensor Autonics EP50S8-1024-2F-N-24	48
Tabel 4. 1 Hasil Pengujian Regulator	62
Tabel 4. 2 Hasil Pengujian DC-DC converter step up	
Tabel 4. 3 Hasil Pengujian Rangkaian Level Shifter	
Tabel 4. 4 Hasil Pengujian Gelombang Pada Sensor & Gelombang Pada Data Sheet	
Tabel 4. 5 Hasil Pengujian Sensor Elevasi	71
Tabel 4. 6 Hasil Pengujian Sensor Kompas Sebelum dikalibrasi	77
Tabel 4. 7 Hasil Pengujian Sudut Azimuth Setelah dikalibrasi	
Tabel 4. 8 Nilai Kalibrasi Kompas	83
Tabel 4. 9 Pengujian Pengiriman Secara Serial	85
Tabel 4. 10 Peletakan Sensor Azimuth	88

DAFTAR GAMBAR

Gambar 2. I Antenna Tracker Tim Mr. Cilindro UMY	8
Gambar 2. 2 Pola radiasi antenna directional	9
Gambar 2. 3 Diagram Blok Sistem Open Loop	10
Gambar 2. 4 Diagram Blok Sistem Close Loop	
Gambar 2. 5 Geometri Kalkulasi Sudut Elevasi	
Gambar 2. 6 Trigonometri Bola	
Gambar 2. 7 RS 485 USB Module	
Gambar 2. 8 Pull Up pada I2C	
Gambar 2. 9 Pengiriman data I2C	
Gambar 2, 10 Arduino Mega 2560	
Gambar 2. 11 U BLOX NEO 7.	
Gambar 2. 12 U BLOX MSN	
Gambar 2. 13 Sensor Automics	
Gambar 2. 14 IC CD 4050 BE	
Gambar 2. 15 Pinout IC 4050	22
Gambar 3. 1 Diagram Alir Penelitian	
Gambar 3. 2 Diagram Blok Sistem Umpan balik Kendali Close Loop	27
Gambar 3. 3 Diagram Blok Perancangan Hardware	
Gambar 3. 4 Skematik Rancangan Peletakan Komponen.	
Gambar 3. 5 Daftar Komponen yang Digunakan pada Skematik	
Gambar 3. 6 LCD 16x2	
Gambar 3. 7 Arduino Mega 2560	
Gambar 3. 8 Konektor Pin	
Gambar 3. 9 Pin SDA dan SCL	33
Gambar 3. 10 PCB Sistem Umpan Balik	
Gambar 3: 11 Simulasi Sensor Autonic menggunakan Logic Probe	
Gambar 3. 12 Simulasi Rangkaian Level Shifter	
Gambar 3. 13 PCB Rangkaian Shifter sensor Autonics	38
Gambar 3. 14 Diagram alir perangkat hunak	
Gambar 3. 15 Memasukkan nilai offset	
Gambar 3. 16 Bagian Pertama Program Sensor Rotary Encoder	44
Gambar 3. 17 Bagian kedua Program Sensor Rotary Encoder	
Gambar 3. 18 Bagian ketiga Program Sensor Rotary Encoder	
Gambar 3. 19 Perencanaan Pemasangan Sensor Elevasi	57
Gambar 3. 20 Pembuatan Roda pada shaft sensor	
Gambar 3. 21 Pembuatan Roda pada Poros Sensor	58
Gambar 3, 22 Peletakan Sensor Kompas	
Gambar 3. 23 Peletakan Box Sensor Processing	
Gambar 4. 1 Pengujian LCD	61
Gambar 4. 2 Grafik Pengujian Sudut Elevasi	75

Gambar 4. 3 Pengujian arah utara	75
Gambar 4. 4 Grafik pengujian sudut azimuth	80
Gambar 4. 5 Grafik Pengujian Sudut Azimuth	83
Gambar 4. 6 Perbandingan Grafik Pengujian Sudut Azimuth	84
Gambar 4. 7 Pengiriman Serial GPS	86
Gambar 4. 8 Data GPS pada U-center	86
Gambar 4. 9 Peletakkan Sensor Elevasi	87