Tensile Strength Between Nanosisal Composite with Nanofiller Composite Dental Restorative Material

<u>Dwi Aji Nugroho</u>^{1,2}, Widjijono³, Nuryono⁴, Widya Asmara⁵, Ensa Dyota Wibuthi²

¹Doctoral Programme, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta Sekip Utara, Bulaksumur, Yogyakarta, Indonesia, email: <u>dwiajinugrohodrg@gmail.com</u>

²Dental School, Faculty of Medical and Health Science, Universitas Muhammadiyah Yogyakarta Jl.Brawijaya, Tamantirto, Kasihan Bantul, Yogyakarta 55183, Indonesia, email: <u>dwiajidrg@umy.ac.id</u>

³Department of Biomaterial, Faculty of Dentistry, Universitas Gadjah Mada, Jl. Denta Sekip Utara, Bulaksumur, Yogyakarta, Indonesia

⁴Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Sekip Utara PO BOX Bulaksumur 21 Yogyakarta 55281, Indonesia

⁵Department of Microbiology, Faculty of Veterinary, Universitas Gadjah Mada, Jl. Fauna No.2 Caturtunggal, Depok, Sleman, Yogyakarta, Indonesia

Introduction. Dental Composite consists of matrix resin, coupling agents, filler, and other supportive materials, its filler is inorganic materials [1]. Their characteristics are non-biodegradable, non-renewable, non-recyclable that contained in composite resin [2]. Natural fiber can be used as substitute for inorganic filler. The most potential natural fiber such as sisal fiber (Agave sisalana) [3]. Sisal fibers are hard and strong fibers derived from sisal plants and can be used as mechanical amplifiers to the matrix resin [3]. This study has manufactured composite resins with sisal that sized nano as their filler and we called nanosisal dental composite. Nanosisal filler volume was recomended at 60% [4]. Tensile strength can predict bond strength reliably for material endurance clinically [5]. This study aimed to determine the difference of tensile strength between nanosisal composite 60% filler with nanofiller dental restorative composite.

Experimental. Sisal fiber converted into nano-sized sisal, labeled as nanosisal. Nanosisal mixed with Bisphenol A glycerolate dimethacrylate (Bis-GMA, Sigma Aldrich), Diurethane dimethacrylate (UDMA, Sigma Aldrich), Triethylene glycol Dimethacrylate (TEGDMA, Sigma Aldrich), Champhorquinone (Sigma Aldrich). Nanofiller composite (Z350 XT 3M ESPE) was utilized as control. We used 10 cone-sized sample (4 x 4 x 2 mm). They divided into 2 groups. Nanosisal composite 60% labeled as group A, nanofiller composite labeled as group B. Extracted premolar teeth were prepared to class V (G. V. Black classifications), then their were filled using samples with total etch adhesive system (3M ESPE). Samples were tested for tensile strength using a Universal Testing Machine. Data was analyzed by Independent Sample T-Test.

Results and Discussion. The mean of tensile strength of nanosisal 60% filler composite resin was 4.39 MPa, and nanofiller composite resin was 1.23 MPa. There was a significant difference in data analysis (p = 0.004; p < 0.05). It was caused by nanosisal composite has stronger bond formed between nanosisal fiber, matrix resin and adhesive due to chemical bond of OH groups [3].

Conclusions. The result showed that nanosisal 60% filler composite resin has higher tensile strength rather than nanofiller composite resin.

References.

- [1] Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials. 12th ed. 2012, St. Louis: Elsevier Saunders. p. 275-6.
- [2] Wambua P, Ivens J, Verpoest I. 2003, Natural fibres: can they replace glass in fibre reinforced plastics?. Compos Sci Technol; vol 63, p.1259–64.
- [3] Ahmad EEM. 2011, The influence of micro- and nano-sisal fibers on the morphology and properties of different polymers. Thesis. Phuthaditjhaba: University of The Free State. p.3-60.
- [4] Nugroho, D. A., Widjijono, W., Nuryono, N., Asmara, W., Astuti, W. D., & Ardianata, D, 2017, Effects of Filler Volume of Nanosisal in Compressive Strength of Composite Resin, Dental Journal (Majalah Kedokteran Gigi); vol 183(32), p.183–187.
- [5] Kramer, M.R., Edelhoff, D., Stawarczyk, B., 2016, Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin, *Materials*, vol 9(83), p.1-14.