BAB II

TINJAUAN PUSTAKA DAN LANDASAN TEORI

2.1. Tinjauan Pustaka

2.1.1. Penelitian Terdahulu tentang Kinerja Ruas Jalan

Palin dkk. (2013) melakukan penelitian tentang tingkat pelayanan pada ruas Jalan Wolter Monginsidi Kota Manado. Jalan Wolter Monginsidi merupakan jalan arteri di Kota Manado yang sering terjadi kemacetan, terutama pada saat jam-jam sibuk. Tujuan penelitian adalah untuk menganalisis tingkat pelayanan pada ruas jalan Wolter Monginsidi Kota Manado. Metode penelitian yang digunakan adalah melakukan survei langsung ke lapangan dan analisis data menggunakan metode MKJI 1997. Hasil dari penelitian ini adalah berupa nilai tingkat pelayanan jalan yang berdasarkan nilai volume lalu lintas, kapasitas, kecepatan, dan derajat kejenuhan. Terdapat perbedaan dari penelitian tersebut dengan penelitian yang penulis lakukan yaitu dalam penelitian ini berlokasi pada ruas jalan Wolter Monginsidi Kota Manado. Sedangkan dalam penelitian yang penulis lakukan berlokasi pada keempat lengan bundaran Jombor Yogyakarta.

Kermite dkk. (2015) melakukan penelitian tentang analisa kerja ruas jalan S. Tubun. Jalan S. Tubun merupakan salah satu jalan arteri di kota Manado, pada jalan ini sering terjadi kemacetan terutama pada jam-jam sibuk, salah satu penyebabnya yaitu adanya aktifitas samping jalan. Tujuan dari penelitian ini untuk mengetahui kinerja ruas jalan S. Tubun. Metode penelitian yang digunakan pada penelitian ini adalah metode survei dan analisis data dengan metode MKJI 1997. Hasil dari penelitian ini berupa nilai tingkat pelayanan jalan yang berdasarkan nilai volume lalu lintas, kapasitas, kecepatan, dan derajat kejenuhan. Terdapat perbedaan dari penelitian tersebut dengan penelitian yang penulis lakukan yaitu dalam penelitian ini berlokasi pada ruas jalan S. Tubun Kota Manado. Sedangkan dalam penelitian yang penulis lakukan berlokasi pada keempat lengan bundaran Jombor Yogyakarta.

Lalenoh dkk. (2015) melakukan penelitian tentang analisa kapasitas ruas jalan Sam Ratulangi dengan metode MKJI 1997, dan PKJI 2014. Tujuan penelitian ini adalah untuk mengetahui kapasitas ruas jalan Sam Ratulangi menggunakan MKJI 1997, dan PKJI 2014. Metode penelitian yang digunakan pada penelitian ini adalah metode survei dan analisis data. Hasil dari penelitian ini adalah berupa nilai tingkat pelayanan jalan yang berdasarkan nilai volume lalu lintas, kapasitas, kecepatan, dan derajat kejenuhan. Terdapat perbedaan dari penelitian tersebut dengan penelitian yang penulis lakukan yaitu dalam penelitian ini berlokasi pada ruas jalan Sam Ratulangi dengan metode MKJI 1997 dan PKJI 2014. Sedangkan dalam penelitian yang penulis lakukan berlokasi pada keempat lengan bundaran Jombor Yogyakarta dengan metode MKJI 1997.

Rahmanda dkk. (2014) melakukan penelitian tentang evaluasi kinerja ruas jalan Bung Karno akibat aktivitas samping jalan disekitar pasar kota Kopang, Lombok tengah. Jalan Bung Karno merupakan akses utama yang menghubungkan pusat-pusat pemerintahan, ruas jalan ini memiliki hambatan samping yang tinggi, salah satu kegiatan yang paling berpengaruh terhadap kinerja ruas jalan tersebut adalah pasar tradisional, pasar ini beroperasi setiap hari dan menimbulkan permasalahan lalu lintas seperti tundaan dan kecelakaan akibat dari kegiatan samping jalan seperti kendaraan berhenti/parkir pada badan jalan, pedestarian dan kluar masuknya kendaraan dari pasar tersebut. Metode penelitian yang digunakan adalah melakukan survei langsung ke lapangan dan analisis data menggunakan metode MKJI 1997. Hasil dari penelitian ini adalah berupa nilai tingkat pelayanan jalan yang berdasarkan nilai volume lalu lintas, kapasitas, kecepatan, dan derajat kejenuhan. Terdapat perbedaan dari penelitian tersebut dengan penelitian yang penulis lakukan yaitu dalam penelitian ini berlokasi pada ruas jalan Bung Karno Lombok Tengah. Sedangkan dalam penelitian yang penulis lakukan berlokasi pada keempat lengan bundaran Jombor Yogyakarta.

Anisari (2017) melakukan penelitian tentang analisa kapasitas pada ruas jalan di kota Tana Paser Kaltim. Tujuan dari penelitian ini untuk mengetahui ruas jalan dengan tingkat kepadatan yang paling tinggi berdasarkan kapasitas jalan, volume lalu lintas, dan derajat kejenuhan di Kota Tana Paser Kaltim. Metode penelitian yang digunakan adalah melakukan survei langsung ke lapangan dan

analisis data menggunakan metode MKJI 1997. Hasil dari penelitian ini adalah berupa nilai tingkat pelayanan jalan yang berdasarkan nilai volume lalu lintas, kapasitas, kecepatan, dan derajat kejenuhan. Terdapat perbedaan dari penelitian tersebut dengan penelitian yang penulis lakukan yaitu dalam penelitian ini ruas jalan yang di analisa adalah seluruh ruas jalan yang berada di kota Tana Paser. Sedangkan dalam penelitian yang penulis lakukan berlokasi pada keempat lengan bundaran Jombor Yogyakarta.

Widari dkk. (2011) melakukan penelitian tentang analisa tingkat pelayanan jalan Medan - Banda Aceh. Tujuan dilakukannya penelitian ini adalah untuk mengetahui tingkat pelayanan di jalan Medan - Banda Aceh. Metode penelitian yang digunakan pada penelitian ini adalah metode survey langsung dan analisis data menggunakan MKJI 1997. Hasil dari penelitian ini adalah berupa nilai tingkat pelayanan jalan yang berdasarkan nilai volume lalu lintas, kapasitas, kecepatan, dan derajat kejenuhan. Terdapat perbedaan dari penelitian tersebut dengan penelitian yang penulis lakukan yaitu dalam penelitian ini berlokasi pada ruas jalan Medan - Banda Aceh. Sedangkan dalam penelitian yang penulis lakukan berlokasi pada keempat lengan bundaran Jombor Yogyakarta.

Novalia dkk. (2016) melakukan penelitian tentang analisa ruas jalan dan solusi kemcetan lalu-lintas di ruas jalan Imam Bonjol. Ruas jalan Imam Bonjol merupakan salah satu titik kemacetan yang ada di kota Bandar Lampung, karena terdapat dua pasar yang berada pada sisi jalan tersebut. Metode penelitian yang digunakan pada penelitian ini adalah metode survei dan analisis data menggunakan MKJI 1997. Hasil dari penelitian ini adalah berupa nilai tingkat pelayanan jalan, dan solusi untuk meningkatkan kinerja ruas jalan. Terdapat perbedaan dari penelitian tersebut dengan penelitian yang penulis lakukan yaitu dalam penelitian ini berlokasi pada ruas jalan Imam Bonjol. Sedangkan dalam penelitian yang penulis lakukan berlokasi pada keempat lengan bundaran Jombor Yogyakarta.

Titirlolobi dkk. (2016) melakukan penelitian tentang analisa kinerja ruas jalan Hasanudin Kota Manado. Jalan Hasanudin merupakan jalan utama di kecamatan Tuminting, pada jalan ini sering terjadi kemacetan yang disebabkan angkutan umum yang berhenti/parkir pada badan jalan dan juga gangguan dari

penyeberang jalan Tujuan di lakukannya penelitian ini untuk mengetahui kinerja ruas jalan Hasanuddin Kota Manado. Metode penelitian yang digunakan pada penelitian ini adalah metode survei dan analisis data menggunakan MKJI 1997. Hasil dari penelitian ini adalah berupa nilai tingkat pelayanan jalan yang berdasarkan nilai volume lalu lintas, kapasitas, kecepatan, dan derajat kejenuhan. Terdapat perbedaan dari penelitian tersebut dengan penelitian yang penulis lakukan yaitu dalam penelitian ini berlokasi pada ruas jalan Hasanuddin Kota Manado. Sedangkan dalam penelitian yang penulis lakukan berlokasi pada keempat lengan bundaran Jombor Yogyakarta.

Samponu dkk. (2015) melakukan penelitian tentang analisa kinerja ruas jalan Manado *Bypass* tahap 1. Tujuan dilakukannya penelitian ini untuk memperoleh data volume, data kecepatan kendaraan dan tingkat pelayanan di ruas jalan Manado *Bypass* tahap I. Metode penelitian yang digunakan pada penelitian ini adalah metode survei dan analisis data menggunakan MKJI 1997. Hasil dari penelitian ini adalah berupa nilai tingkat pelayanan jalan yang berdasarkan nilai volume lalu lintas, kapasitas, kecepatan, dan derajat kejenuhan. Terdapat perbedaan dari penelitian tersebut dengan penelitian yang penulis lakukan yaitu dalam penelitian ini berlokasi pada ruas Manado *Bypass* tahap 1. Sedangkan dalam penelitian yang penulis lakukan berlokasi pada keempat lengan bundaran Jombor Yogyakarta.

Salmani dkk. (2013) melakukan penelitian tentang kinerja ruas jalan Slamet Riyadi Samarinda. Tujuan dilakukannya penelitian ini untuk mengetahui kinerja ruas jalan Slamet Riyadi Samarinda. Metode penelitian yang digunakan pada penelitian ini adalah metode survei dan analisis data menggunakan MKJI 1997. Hasil dari penelitian ini adalah berupa nilai tingkat pelayanan jalan yang berdasarkan nilai volume lalu lintas, kapasitas, kecepatan, dan derajat kejenuhan. Terdapat perbedaan dari penelitian tersebut dengan penelitian yang penulis lakukan yaitu dalam penelitian ini berlokasi pada ruas jalan Slamet Riyadi Samarinda. Sedangkan dalam penelitian yang penulis lakukan berlokasi pada keempat lengan bundaran Jombor Yogyakarta.

2.2. Landasan Teori

2.2.1. Volume Lalu Lintas (Q)

Volume lalu lintas adalah jumlah kendaraan yang melewati satu titik per satuan waktu pada lokasi tertentu. Untuk mengukur jumlah arus lalu lintas, biasanya dinyatakan dalam keadaan per hari, sampai per jam, dan kendaraan per menit (Bina Marga, 1997)

Ekivalen mobil penumpang untuk masing-masing tipe kendaraan tergantung pada tipe jalan dan arus lalu lintas total yang dinyatakan dalam kendaraan per jam (Bina Marga, 1997). Analisa volume lalu lintas untuk jalan perkotaan dan jalan luar kota dapat dilihat pada persamaan (2.1) dan (2.2)

- Jalan perkotaan

$$Q = (HV \times Emp) + (LV \times Emp) + (MC \times Emp)...(2.1)$$

- Jalan luar kota

$$Q = (LT \times Emp) + (LB \times Emp) + (MHV \times Emp) + (LV \times Emp) + (MC \times Emp) \dots (2.2)$$

Dengan:

- LV : Mobil penumpang, jeep, pick up.

- HV : Bus, truk, dan kendaraan lebih dari 4 roda.

- MC : Kendaraan bermotor dengan 2 atau 3 roda.

- LT: Truk besar tiga gardan dan truk kombinasi.

- LB: Bis besar dengan dua atau tiga gardan.

- MHV: Kendaraan berat menengah, bis sedang dan truk sedang

- UM: Kendaraan tak bermotor, sepeda becak dll

Tabel 2.1 Ekivalen mobil penumpang untuk jalan perkotaan Terbagi (Bina Marga, 1997)

	Arus lalu lintas	Emp	
Tipe jalan	per lajur (kend/jam)	HV	MC
Dua-lajur satu-arah (2/1)	0	1,3	0,40
Empat-lajur terbagi (4/2 D)	> 1050	1,2	0,25
Tiga-lajur satu-arah (3/1)	0	1,3	0,40
Enam-lajur terbagi (6/2 D)	> 1100	1,2	0,25

Tabel 2.2.Ekivalen mobil penumpang untuk jalan luar kota 4/2 D (Bina Marga, 1997)

Tipe	Arus lalu lintas per arah	Emp			
alinyemen	(kend/jam)	MHV	LB	LT	MC
Datar	0	1,2	1,2	1,6	0,5
	1000	1,4	1,4	2,0	0,6
	1800	1,6	1,7	2,5	0,8
	> 2150	1,3	1,5	2,0	0,5
Bukit	0	1,8	1,6	4,8	0,4
	750	2,0	2,0	4,6	0,5
	1400	2,2	2,3	4,3	0,7
	>1750	1,8	1,9	3,5	0,4
Gunung	0	3,2	2,2	5,5	0,3
	550	2,9	2,6	5,1	0,4
	1100	2,6	2,9	4,8	0,6
	>1500	2,0	2,4	3,8	0,3

2.2.2. Hambatan Samping

Memasukan hasil pengamatan mengenai frekuensi hambatan samping per jam pada kedua sisi segmen yang diamati:

- Jumlah pejalan kaki berjalan atau menyeberang sepanjang segmen jalan.
- Jumlah kendaraan berhenti dan parkir.
- Jumlah kendaraan bermotor yang masuk dan keluar ke/dari lahan samping jalan dan jalan sisi.
- Arus kendaraan yang bergerak lambat, yaitu arus total (kend/jam) dari sepeda, becak, delman, pedati, traktor dan sebagainya.

Untuk menentukan frekuensi bobot kejadian, dengan cara mengalikan data hambatan samping dengan bobot relative dari tipe kejadian selalnjutnya gunakan Tabel 2.10 untuk mendapatkan kelas hambatan samping

Dan apabila data yang didapat kurang rinci maka kelas hambatan samping ditentukan dengan pengamatan visual dengan kondisi sesungguhnya pada lokasi yang diamati untuk periode yang diamati, selanjutnya gunakan Tabel 2.10 dan 2.11 untuk menentukan kelas hambatan samping.

Tabel 2.3 Bobot hambatan samping (Bina Marga, 1997)

No	Jenis hambatan samping	Faktor konversi
1.	Pejalan kaki berada dibadan jalan	0,5
2.	Kendaraan Parkir, Kendaraan Berhenti	1,0
3.	Kendaraan Keluar Masuk	0,7
4.	Pejalan kaki menyeberang jalan	0,5

Tabel 2.4 Kelas hambatan samping untuk jalan perkotaan (Bina Marga, 1997)

Kelas		Jumlah berbobot	
hambatan	Kode	kejadian per 200 m	Kondisi khusus
samping (SFC)		per jam (dua sisi)	
Sangat rendah	VL	< 100	Daerah pemukiman; jalan
			samping tersedia.
Rendah	L	100 - 299	Daerah permukiman; beberapa
			angkutan umum dsb.
Sedang	M	300 - 499	Daerah industri; beberapa toko
			sisi jalan.
Tinggi	Н	500 - 899	Daerah komersial; aktivitas sisi
			jalan tinggi
Sangat Tinggi	VH	> 900	Daerah komersial; aktivitas
			pasar sisi jalan.

Tabel 2.5 Kelas hambatan samping untuk jalan luar kota (Bina Marga, 1997)

Kelas		Jumlah berbobot		
hambatan	Kode	kejadian per 200 m	Kondisi khusus	
samping (SFC)		per jam (dua sisi)		
Sangat rendah	VL	< 50	Pedalaman, pertanian atau	
			tanpa kegiatan	
Rendah	L	50 - 149	Pedalaman; beberapa bangunan	
			dan kegiatan samping jalan.	
Sedang	M	150 - 249	Desa, kegiatan angkutan lokal	
Tinggi	Н	250 - 350	Desa, beberapa kegiatan pasar	
Sangat Tinggi	VH	> 350	Hampir perkotaan, pasar	
			/kegiatan perdagangan.	

2.2.3. Kecepatan Arus Bebas

Untuk jalan terbagi, analisa dilakukan terpisah pada masing-masing arah lalu lintas, seolah-olah masing-masing arah merupakan jalan satu arah yang terpisah. Kecepatan arus bebas kendaraan ringan digunakan sebgai ukuran utama kinerja dalam metode MKJI 1997.

Analisa penentuan kecepatan arus bebas kendaraan ringan untuk jalan perkotaan:

$$FV = (Fvo + FVw) \times FFVsf \times FFVcs \dots (2.3)$$

Analisa penentuan kecepatan arus bebas kendaraan ringan untuk jalan luar kota:

$$FV = (Fvo + FVw) \times FFVsf \times FFVrc \dots (2.4)$$

Dengan:

FV : Kecepatan arus bebas kendaraan ringan (km/jam)

FVo : Kecepatan arus bebas dasar kendaraan ringan (km/jam)

FVw : Penyesuaian lebar jalur lalu-lintas efektif

FFVsf : Faktor penyesuaian kondisi hambatan samping

FFVcs : Faktor penyesuaian ukuran kota

FFVrc : Faktor penyesuaian untuk kelas fungsi jalan

Untuk menentukan kecepatan arus bebas dasar kendaraan ringan dapat dilihat pada Tabel 2.6.

Tabel 2.6 Kecepatan arus bebas dasar (FVo), untuk jalan perkotaan (Bina Marga, 1997)

	Kecepatan arus bebas dasar km/jam			
Tipe Jalan	Kendaraan ringan	Kendaraan berat	Sepeda motor	Semua kendaraan (rata-rata)
Enam-lajur terbagi (6/2 D) atau	61	52	48	57
tiga-lajur satu arah (3/1) Empat-lajur terbagi (4/2 D) atau dua-lajur satu arah	57	50	47	55
Empat-lajur tak-terbagi (4/2 UD) Empat lajur tak-terbagi (2/2 UD)	53 44	46 40	43 40	51 42

Tabel 2.7 Kecepatan arus bebas dasar (FVo), untuk jalan luar kota (Bina Marga, 1997)

Tipe Jalan/ Tipe Alinyemen _	Kecep	atan arus b	oebas da	asar km	/jam
	LV	MHV	LB	LT	MC
Enam lajur terbagi					
- Datar.	83	67	86	64	64
- Bukit.	71	56	68	52	58
- Gunung.	62	45	55	40	55
Empat lajur terbagi					
- Datar.	78	65	81	62	64
- Bukit.	68	55	66	51	58
- Gunung.	60	44	-53	39	55
Empat lajur tak terbagi					
- Datar.	74	63	78	60	60
- Bukit.	66	54	65	50	56
- Gunung.	58	43	52	39	53
Dua lajur tak terbagi					
- Datar SDC A.	68	60	73	58	55
- Datar SDC B.	65	57	69	55	54
- Datar SDC C.	61	54	63	52	53
- Bukit.	61	52	62	49	53
- Gunung.	55	42	50	38	51

Menentukan penyesuaian untuk pengaruh lebar jalur lalu lintas pada kecepatan arus kendaraan ringan (FVw) untuk jalan perkotaan dan luar kota bisa dilihat di Tabel 3.8 dan Tabel 3.9.

Tabel 2.8 Penyesuaian kecepatan arus bebas untuk lebar jalur lalu lintas jalan perkotaan (Bina Marga, 1997)

Tipe Jalan	Lebar jalur lalu-lintas efektif (Wc) (m)	FVw (km/jam)
Empat-lajur terbagi	Per lajur	
atau jalan satu-arah	3,00	-4
	3,25	-2
	3,50	0
	3,75	2
	4,00	4
Empat-lajur tak-terbagi	Per lajur	
	3,00	-4
	3,25	-2
	3,50	0
	3,75	2
	4,00	4
Dua-lajur tak terbagi	Total	
	5	-9,5
	6	-3
	7	0
	8	3
	9	4
	10	6
	11	7

Tabel 2.9 Penyesuaian kecepatan arus bebas untuk lebar jalur lalu lintas jalan luar kota (Bina Marga, 1997)

	Lebar efektif	FVw (km/jam)			
Tipe jalan	jalur lalu	Datar: SDC=	Bukit: SDC=	Gunung	
	lintas (Wc)	A,B	A,B,C	Gunung	
Empat lajur	Per lajur				
dan enam	3,00	-3	-3	-2	
lajur terbagi	3,25	-1	-1	-1	
	3,50	0	0	0	
	3,75	2	2	2	
Empat lajur	Per lajur				
tak terbagi	3,00	-3	-2	-1	
	3,25	-1	-1	-1	
	3,50	0	0	0	
	3,75	2	2	2	

Berlanjut

Tabel 2.10 Penyesuaian kecepatan arus bebas untuk lebar jalur lalu lintas jalan luar kota (Bina Marga, 1997) (Lanjutan)

	Lebar efektif	FVw (km/jam)			
Tipe jalan	jalur lalu	Datar: SDC=	Bukit: SDC=	Cununa	
	lintas (Wc)	A,B	A,B,C	Gunung	
Dua lajur tak	Total				
terbagi	5	-11	-9	-7	
	6	-3	-2	-1	
	7	0	0	0	
	8	1	1	0	
	9	2	2	1	
	10	3	3	2	
	11	3	3	2	

Untuk menentukan faktor penyesuaian kecepatan arus bebas untuk ukuran kota, dapat dilihat pada Tabel 2.10

Tabel 2.11 Faktor penyesuaian kecepatan arus bebas kendaraan ringan untuk ukuran kota (FFVcs) (Bina Marga, 1997)

Ukuran kota (juta penduduk)	Faktor penyesuaian untuk ukuran kota
< 0,1	0,90
0.1 - 0.5	0,93
0,5-1,0	0,95
1,0-3,0	1,00
> 3,0	1,03

Faktor penyesuaian kecepatan arus bebas untuk hambatan samping (FFVsf) pada Kecepatan Arus Bebas untuk jalan perkotaan dan jalan luar kota dapat dilihat pada Tabel 2.11 dan 2.12.

Tabel 2.12 Faktor penyesuaian untuk pengaruh hambatan samping dan jarak kerebpenghalang (FFVsf) pada kecepatan arus bebas kendaraan ringan untuk jalan perkotaan dengan kerb. (Bina Marga, 1997)

	Faktor penyesuaian untuk hambatan					
Time inlan	Kelas hambatan	samping dan jarak kereb – penghalang				
Tipe jalan	samping (SFC)	Jarak kerb - penghalang Wk (m)				
	•	<0,5 m	1,0 m	1,5 m	>2 m	
Empat-lajur	Sangat Rendah	1,00	1,01	1,01	1,02	
terbagi 4/2 D	Rendah	0,97	0,98	0,99	1,00	
	Sedang	0,93	0,95	0,97	0,99	
	Tinggi	0,87	0,90	0,93	0,96	
	Sangat Tingi	0,81	0,85	0,88	0,92	
Empat-lajur tak-	Sangat Rendah	1,00	1,01	1,01	1,02	
terbagi 4/2 UD	Rendah	0,96	0,98	0,99	1,00	
	Sedang	0,91	0,93	0,96	0,98	
	Tinggi	0,84	0,87	0,90	0,94	
	Sangat Tinggi	0,77	0,81	0,85	0,90	
Dua-lajur tak-	Sangat Rendah	0,98	0,99	0,99	1,00	
terbagi atau jalan	Rendah	0,93	0,95	0,96	0,98	
satu-arah	Sedang	0,87	0,89	0,92	0,95	
	Tinggi	0,78	0,81	0,84	0,88	
	Sangat Tinggi	0,68	0,72	0,77	0,82	

Tabel 2.13 Faktor penyesuaian untuk pengaruh hambatan samping dan jarak kerebpenghalang (FFVsf) pada kecepatan arus bebas kendaraan ringan untuk jalan luar kota. (Bina Marga, 1997)

		Faktor	penyesuai	an untuk ha	ambatan
Tipe jalan	Kelas hambatan	samping	g dan jarak	kereb – pe	nghalang
Tipe jaian	samping (SFC)	Jarak	kerb - pei	nghalang V	Vk (m)
		<0,5 m	1,0 m	1,5 m	>2 m
Empat-lajur	Sangat Rendah	1,00	1,00	1,00	1,00
terbagi 4/2 D	Rendah	0,98	0,98	0,98	0,99
	Sedang	0,95	0,95	0,96	0,98
	Tinggi	0,91	0,92	0,93	0,97
	Sangat Tingi	0,86	0,87	0,89	0,96

Berlanjut

Tabel 2.14 Faktor penyesuaian untuk pengaruh hambatan samping dan jarak kereb-penghalang (FFVsf) pada kecepatan arus bebas kendaraan ringan untuk jalan luar kota. (Bina Marga, 1997) (Lanjutan)

		Faktor	penyesuai	an untuk ha	ambatan
Tipe jalan	Kelas hambatan	Kelas hambatan samping dan jarak kereb – pengh			
Tipe jaian	samping (SFC)	Jarak	kerb - pei	nghalang V	Vk (m)
		<0,5 m	1,0 m	1,5 m	>2 m
Empat-lajur tak-	Sangat Rendah	1,00	1,00	1,00	1,00
terbagi 4/2 UD	Rendah	0,96	0,97	0,97	0,98
	Sedang	0,92	0,94	0,95	0,97
	Tinggi	0,88	0,89	0,90	0,96
	Sangat Tinggi	0,81	0,83	0,85	0,95
Dua-lajur tak-	Sangat Rendah	1,00	1,00	1,00	1,00
terbagi 2/2 UD	Rendah	0,96	0,97	0,97	0,98
	Sedang	0,91	0,92	0,93	0,97
	Tinggi	0,85	0,87	0,88	0,95
	Sangat Tinggi	0,70	0,79	0,82	0,93

Tabel 2.15 Faktor penyesuaian akibat kelas fungsional dan guna lahan (FFVrc) pada kecepatan arus bebas kendaraan ringan

Tipe Jalan	Faktor penyesuaian FFVrc				
_	Pengembangan samping jalan (%)				
	0	25	50	75	100
Empat lajur terbagi					
Arteri	1,00	0,99	0,98	0,96	0,95
Kolektor	0,99	0,98	0,97	0,95	0,94
Lokal	0,98	0,97	0,94	0,94	0,93
Empat lajur tak terbagi					
Arteri	1,00	0,99	0,97	0,96	0,95
Kolektor	0,97	0,96	0,94	0,95	0,94
Lokal	0,95	0,94	0,92	0,94	0,93
Dua lajur tak terbagi					
Arteri	1,00	0,98	0,97	0,96	0,94
Kolektor	0,94	0,93	0,91	0,90	0,88
Lokal	0,90	0,88	0,87	0,86	0,84

2.2.4. Kapasitas Jalan

Menurut Bina Marga 1997, kapasitas jalan didefinisikan sebagai arus maksimum melalui suatu titik di jalan yang dapat dipertahankan per satuan jam pada kondisi tertentu. Untuk jalan dengan banyak lajur, arus dipisahkan per arah dan kapasitas ditentukan per lajur. Kapasitas dinyatakan dalam satuan mobil penumpang (smp) sebagai berikut:

Untuk jalan perkotaan:

$$Co = Co \times FCw \times FCsp \times FCsf \times FCcs.$$
 (2.5)

Untuk jalan luar kota:

$$Co = Co \times FCw \times FCsp \times FCsf \dots (2.6)$$

Dengan:

C : Kapasitas sesungguhnya (smp/jam)

Co : Kapasitas dasar (smp/jam)

FCw: Faktor penyusuaian lebar jalan

FCsp: Faktor penyesuaian pemisahan arah (hanya untuk jalan tak terbagi)

FCcf: Faktor penyesuaian hambtan samping dan bahu jalan/kereb

FCcs: Faktor penyesuaian ukuran kota

Menentukan nilai kapasitas dasar untuk jalan perkotaan dan jalan luar kota dapat dilihat pada Tabel 2.15 dan 2.16 di bawah ini.

Tabel 2.16 Kapasitas dasar untuk jalan perkotaan (Bina Marga, 1997)

	Kapasitas dasar		
Tipe Jalan	jalan perkotaan	Catatan	
	(smp/jam)		
Enam atau empat lajur terbagi	1.650	Per Lajur	
atau jalan satu arah	1.030		
Empat lajur tak terbagi	1.500	Per Lajur	
Dua lajur tak terbagi	2.900	Total dua arah	

Tabel 2.17 Kapasitas dasar untuk jalan luar kota (Bina Marga, 1997)

	Tipe Jalan	Kapasitas dasar total kedua arah (smp/jam/lajur)
Enam a - - -	atau empat lajur terbagi Datar Bukit Gunung	1900 1850 1800
Em	pat lajur tak terbagi	
-	Datar	1700
-	Bukit	1650
-	Gunung	1600

Menentukan Faktor penyesuaian kapasitas untuk lebar jalur lalu lintas (FCw) untuk jalan perkotaan dan jalan luar kota dapat dilihat pada Tabel 2.18 dan 2.19 dibawah ini.

Tabel 2.18 Faktor penyesuaian kapasitas untuk pengaruh lebar lajur lalu lintas (FCw) untuk jalan perkotaan (Bina Marga, 1997)

Tipe Jalan	Lebar jalur lalu-lintas efektif (Wc) (m)	FCw
Empat-lajur terbagi	Per lajur	
atau jalan satu-arah	3,00	0,92
	3,25	0,96
	3,50	1,00
	3,75	1,04
	4,00	1,08
Empat-lajur tak-terbagi	Per lajur	
	3,00	0,91
	3,25	0,95
	3,50	1,00
	3,75	1,05
	4,00	1,09
Dua-lajur tak terbagi	Total	
	5	0,56
	6	0,87
	7	1,00
	8	1,14
	9	1,25
	10	1,29
	11	1,34

Tabel 2.19 Faktor penyesuaian kapasitas untuk pengaruh lebar lajur lalu lintas (FCw) untuk jalan luar kota (Bina Marga, 1997)

Tipe Jalan	Lebar jalur lalu-lintas efektif (Wc) (m)	FCw
Empat-lajur terbagi	Per lajur	
Enam lajur-terbagi	3,00	0,91
	3,25	0,96
	3,50	1,00
	3,75	1,03
Empat-lajur tak-terbagi	Per lajur	
	3,00	0,91
	3,25	0,96
	3,50	1,00
	3,75	1,03
Dua-lajur tak terbagi	Total	
	5	0,69
	6	0,91
	7	1,00
	8	1,08
	9	1,15
	10	1,21
	11	1,27

Menentukan Faktor penyesuaian kapasitas untuk pemisah arah, untuk jalan-jalan dua arah dan jalan empat arah terbagi menggunakan penyesuaian pada Tabel 2.20 untuk jalan perkotaan, dan Tabel 2.21 untuk jalan luar kota. sedangkan untuk jalan satu arah, faktor penyesuaian kapasitas untuk pemisah arah tidak dapat diterapkan dan nilainya 1,0.

Tabel 2.20 Faktor penyesuaian kapasitas untuk pemisah arah (FCsp) untuk lajan perkotaan (Bina Marga, 1997)

Pemis	sahan arah SP % - %	50-50	55-45	60-40	65-35	70-30
FC _c p	Dua-lajur 2/2	1,00	0,97	0,94	0,91	0,88
FCsp	Empat-lajur 4/2	2,00	0,985	0,97	0,955	0,94

Tabel 2.21 Faktor penyesuaian kapasitas untuk pemisah arah (FCsp) untuk jalan luar kota (Bina Marga, 1997)

Pemis	sahan arah SP % - %	50-50	55-45	60-40	65-35	70-30
FCsp	Dua-lajur 2/2	1,00	0,97	0,94	0,91	0,88
resp	Empat-lajur 4/2	1,00	0,975	0,95	0,925	0,90

Untuk menentukan faktor penyesuaian kapasitas untuk hambatan samping berdasarkan jarak kerb-penghalang pada trotoar (Wk) dan kelas hambatan samping untuk jalan perkotaan dan jalan luar kota dapat dilihat pada Tabel berikut.

Tabel 2.22 Faktor penyesuaian kapasitas untuk pengaruh hambatan samping dan jarak kereb penghalang (FCsf) pada jalan perkotaan (Bina Marga, 1997)

	Kelas	Faktor penyesuaian untuk hambatan samping				
Tipe jalan	hambatan	dan jar	ak kereb – _l	penghalang ((FCsf).	
Tipe jaian	samping	Jara	Jarak: kerb – penghalang (Wk) (m)			
	(SFC)	<0,5 m	1,0 m	1,5 m	>2 m	
Empat-lajur	VL	0,95	0,97	0,99	1,01	
terbagi 4/2 D	L	0,94	0,96	0,98	1,00	
	M	0,91	0,93	0,95	0,98	
	Н	0,86	0,89	0,92	0,95	
	VH	0,81	0,85	0,88	0,92	
Empt-lajur	VL	0,95	0,97	0,99	1,01	
tak-trbagi 4/2	L	0,93	0,95	0,97	1,00	
UD	M	0,90	0,92	0,95	0,97	
	Н	0,84	0,87	0,90	0,93	
	VH	0,77	0,81	0,85	0,90	
Dua-lajur tak-	VL	0,93	0,95	0,97	0,90	
terbagi atau	L	0,90	0,92	0,95	0,97	
jalan satu-arah	M	0,86	0,88	0,91	0,94	
	Н	0,78	0,81	0,84	0,88	
	VH	0,68	0,72	0,77	0,82	

Tabel 2.23 Faktor penyesuaian kapasiatas untuk pengaruh hambatan samping dan lebar bahu (FCsf) pada jalan luar kota (Bina Marga, 1997)

Tipe jalan	Kelas	Faktor pen	yesuaian un	tuk hambata	an samping
	hambatan	dan ja	rak kereb–p	enghalang (FCsf).
	samping		Lebar bah	u efektif Ws	s (m)
	(SFC)	<0,5 m	1,0 m	1,5 m	>2 m
4/2 D	VL	0,99	1,00	1,01	1,03
	L	0,96	0,97	0,99	1,01
	M	0,93	0,95	0,96	0,99
	Н	0,90	0,92	0,95	0,97
	VH	0,88	0,90	0,93	0,96
4/2 UD	VL	0,97	0,99	1,00	1,02
2/2 UD	L	0,93	0,95	0,97	1,00
	M	0,88	0,91	0,94	0,98
	Н	0,84	0,87	0,91	0,95
	VH	0,80	0,83	0,88	0,93

Untuk menentukan faktor penyesuaian kapasitas untuk ukuran kota, dapat dilihat pada Tabel 2.24 dibawah ini. Penentuan ukuran kota dengan menggunakan funsi jumlah penduduk (juta).

Tabel 2.24 Faktor penyesuaian kapasitas untuk ukuran kota (FCcs) pada jalan perkotaan (Bina Marga, 1997)

Ukuran kota (juta penduduk)	Faktor penyesuaian untuk ukuran kota
< 0,1	0,86
0,1-0,5	0,90
0,5-1,0	0,94
1,0-3,0	1,00
> 3,0	1,04

2.2.5. Kecepatan Tempuh (V)

Manual menggunakan kecepatan tempuh sebagai ukuran utama kinerja segmen jalan, karena mudah dimengerti dan diukur. Kecepatan tempuh didefinisikan dalam manual ini sebagai kecepatan rata-rata dari kendaraan

sepanjang segmen jalan (Bina Marga, 1997). Dalam penelitian ini data kecepatan tempuh di ambil menggunakan alat *Speed Gun*

2.2.6. Derajat Kejenuhan (DS)

Menurut Bina Marga 1997, derajat kejenuhan merupakan perbandingan dari nilai volume terhadap kapasitasnya, derajat kejenuhan digambarkan apakah suatu ruas jalan mempunyai masalah atau tidak dan derajat kejenuhan maksimum adalah 0,75. Berdasarkan definisi derajat kejenuhan, DS dihitung sebagai berikut:

$$DS = \frac{Q}{C} \qquad (2.7)$$

Dengan:

DS: Derajat kejenuhan

Q: Volume Lalu-lintas jam puncak (smp/jam)

C = Kapasits (smp/jam)

2.2.7. Kinerja Ruas Jalan

Menurut Manual Kapasitas Jalan Indonesia 1997, derajat kejenuhan merupakan parameter dari kinerja ruas jalan, sedangkan menurut Morlok 1998, kinerja ruas jalan dapat didefinisikan, sejauh mana kemampuan jalan menjalankan fungsinya (Morlok, 1998).

Kepadatan lalu-lintas yang tinggi akan menyebabkan berkurangnya kecepatan dan keterbatasan pada pengemudi. Besarnya volume pada ruas jalan digunakan sebagai ukuran untuk mengetahui tingkat suatu pelayanan jalan. Saat ini ukuran terbaik untuk melihat tingkat pelayanan pada suatu kondisi arus lalu-lintas adalah kecepatan oprasi dan perbandingan antara volume dan kapasitas pada jalan dua lajur atau empat lajur.

Tabel 2.25 Karakteristik tingkat pelayanan (Morlock, 1998)

Tingkat	Karakteristik – karakteristik	Batas Lingkup V/C
Pelayanan		
A	Kondisi arus bebas dengan kecepatan	0,00-0,20
	tinggi pengemudi dapat memilih	
	kecepatan yang diinginkan tanpa	
	hambatan.	
В	Arus stabil, tetapi kecepatan oprasi	0,20-0,44
	mulai dibatasi oleh kondisi lalu-lintas.	
	Pengemudi memiliki kebebasan yang	
	cukup untuk memilih kecepatan.	
C	Arus stabil, tetapi kecepatan dan gerak	0,45 - 0,74
	kendaraan dikendalikan.	
	Pengemudi dibatasi dalam memilih	
	kecepatan.	
D	Arus mendekati tidak stabil, kecepatan	0,75 - 0,84
	masih dikendalikan v/c masih dapat	
	ditoleri.	
E	Arus stabil, kecepatan arus kadangan	0.85 - 1.0
	terhenti.	
F	Arus dipaksakan atau macet, kecepatan	>1
	sangat rendah, volume diatas kapasitas.	
	Antrian panjang dan terjadi hambatan-	
	hambatan besar.	