BAB IV

HASIL DAN PEMBAHASAN

4.1 Spesifikasi Alat

Alat audiometer merupakan alat yang berfungsi untuk mengukur ambang batas pendengaran manusia. Adapun spesifikasi alat yang penulis buat adalah sebagai berikut:

a. Nama Alat: Audiometer Berbasis Arduino R3

b. Tegangan: DC 12 V

c. Frekuensi: 97 – 9700 Hz

d. Desibel : 10- 100 dB

e. Dimensi Alat (P x L x T) : 1920 mm x 1300 mm x 80mm

f. Headset: Sony Extra Bass

Berikut ini adalah gambar bentuk dari alat yang penulis dibuat, seperti yang ditunjukan pada gamabar 4.1.

Gambar 4. 1 Alat Tugas Akhir

35

4.1.1 Standar Operasional Prosedur Alat

Dalam mengoperasikan alat terdapat langkah-langkah yang harus dilakukan diantaranya

adalah sebagai berikut:

a. Tekan tombol *On* untuk menyalakan alat.

b. Pasang *headphone* pada pasien.

c. Pilih frekuensi dan intensitas suara yang diinginkan.

d. Tekan tombol *play* untuk memulai pengujian.

e. Jika pasien mendengar maka lakukan kembali pemilihan frekuensi dan intensitas suara

untuk melakukan pengujian pada frekuensi dan intensitas suara yang lain.

f. Tekan tombol save jika pasien mendengar bunyi.

g. Setelah selesai melakukan pengujian tekan tombol Off.

h. Rapihkan alat setelah selesai digunakan.

i. Simpan alat ditempat yang bersih dan sejuk.

4.2 Pengujian Alat

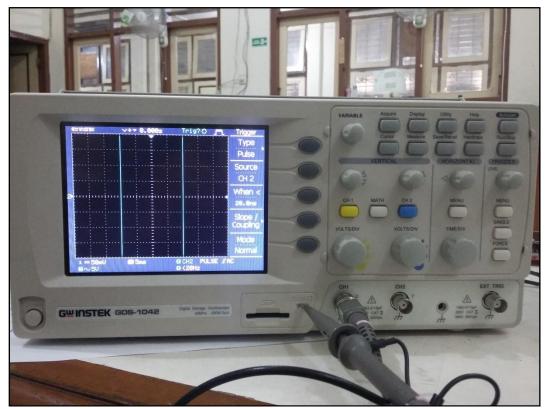
Setelah alat selesai dibuat, langkah selanjutnya adalah melakukan pengujian dan

pengukuran. Tujuan dari pengujian dan pengukuran pada alat adalah untuk memastikan alat

berfungsi dengan baik dan seberapa akurat alat dibuat dengan dibandingkan alat yang sudah

terkalibrasi.

4.2.1 Spesifikasi Alat Pembanding


Nama : Osiloskop Digital

Merk : GW INSTEK GDS-1042

Tampilan: Digital LCD

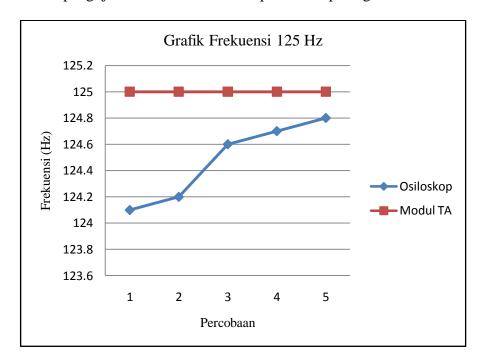
Osiloskop digunakan karena dapat mengukur gelombang frekuensi yang dihasilkan oleh

alat. Selain itu osiloskop juga digunakan untuk mengukur tegangan, baik tegangan masuk atau tegangan keluar. Gambar 4.2 menunjukan alat pembanding yang digunakan pada saat pengambilan data.

Gambar 4. 2 Osiloskop

4.2.2 Pengukuran Frekuensi pada Alat

Pada pengukuran frekuensi, penulis mengukur dan membandingkan frekuensi yang tertampil pada LCD dengan hasil ukur pada alat osiloskop.


a. Frekuensi 125 Hz

Hasil analisis dan pengukuran pada frekuensi 125 Hz dapat dilihat pada tabel 4.1 dibawah ini :

Tabel 4.	1 Hasil	Pengukuran	Frekuensi	125 Hz

Frekuensi	Percobaan	Hasil Percobaan		Selisih
FIEKUEIISI	reicobaan	Osiloskop	Modul TA	Selisili
	1	124,1 Hz	125 Hz	0,9 Hz
125 Hz	2	124,2 Hz	125 Hz	0,8 Hz
	3	124,6 Hz	125 Hz	0,6 Hz
	4	124,7 Hz	125 Hz	0,3 Hz
	5	124,8 Hz	125 Hz	0,2 Hz
Rata-rata		124,48 Hz	125 Hz	0,56 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 0,9 Hz pada percobaan ke 1 dan selisih terendah yaitu 0,2 Hz pada percobaan ke 5. Hasil rata-rata yang didapat alat pembanding adalah 124,48 Hz, sedangkan rata-rata selisihnya 0,56 Hz. Grafik dari hasil pengujian frekuensi 125 Hz dapat dilihat pada gambar 4.4 dibawah ini:

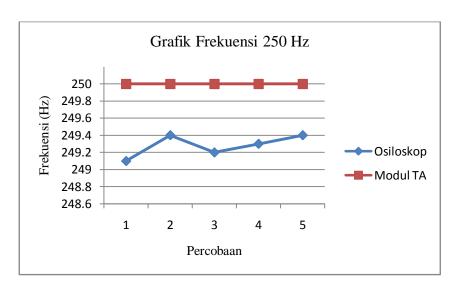
Gambar 4. 3 Grafik Frekuensi 125 Hz

Where the state of the state of

Berikut adalah bentuk gelombang pada frekuensi 125 Hz.

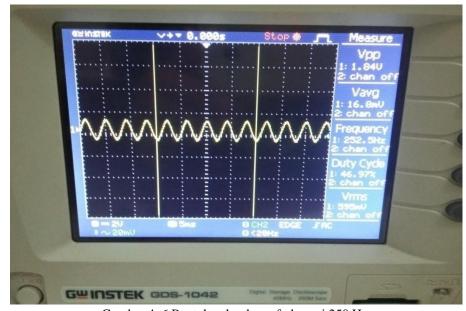
Gambar 4. 4 Bentuk gelombang frekuensi 125 Hz

b. Frekuensi 250 Hz


Hasil analisis dan pengukuran pada frekuensi 250 Hz dapat dilihat pada tabel 4.2 dibawah ini :

Tabel 4. 2 Hasil Pengukuran Frekuensi 250 Hz

acet ii = 11mgii 1 enganarun 11enaensi =e o 11E				
Frekuensi	Percobaan	Hasil Percobaan		Selisih
FIERUEIISI		Osiloskop	Modul TA	Sensin
	1	249,1 Hz	250 Hz	0,9 Hz
250 Hz	2	249,4 Hz	250 Hz	0,6 Hz
	3	249,2 Hz	250 Hz	0,8 Hz
	4	249,3 Hz	250 Hz	0,7 Hz
	5	249,4 Hz	250 Hz	0,6 Hz
Rata-rata		249,28 Hz	250 Hz	0,72 Hz

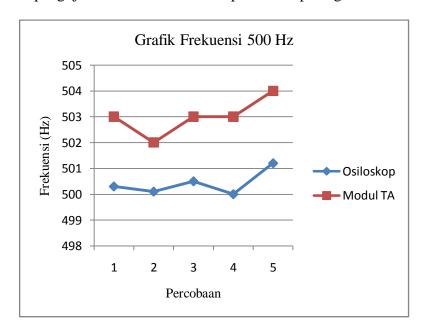

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 0,9 Hz pada percobaan ke 1 dan selisih terendah yaitu 0,6 Hz pada percobaan ke 2 dan 3. Hasil ratarata yang didapat alat pembanding adalah 248,28 Hz, sedangkan rata-rata selisihnya 0,72

Hz. Grafik dari hasil pengujian frekuensi 250 Hz dapat dilihat pada gambar 4.5 dibawah ini:

Gambar 4. 5 Grafik Frekuensi 250 Hz

Berikut ini adalah bentuk gelombang pada frekuensi 250 Hz

Gambar 4. 6 Bentuk gelombang frekuensi 250 Hz


c. Frekuensi 500 Hz

Hasil analisis dan pengukuran pada frekuensi 500 Hz dapat dilihat pada tabel 4.3 dibawah ini :

Tabel 4. 3 Hasil Pengukuran Frekuensi 500 Hz

Frekuensi	Percobaan	Hasil Percobaan		Selisih
Frekuensi		Osiloskop	Modul TA	Sensin
	1	500,3 Hz	503 Hz	2,7 Hz
	2	500,1 Hz	502 Hz	1,9 Hz
500 Hz	3	500,5 Hz	503 Hz	2,5 Hz
	4	500 Hz	503 Hz	3 Hz
	5	501,2 Hz	504 Hz	2,8 Hz
Rata-rata		500,4 Hz	503 Hz	2,6 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 3 Hz pada percobaan ke 4 dan selisih terendah yaitu 1,9 Hz pada percobaan ke 2. Hasil rata-rata yang didapat alat pembanding adalah 503 Hz, sedangkan rata-rata selisihnya 2,6 Hz. Grafik dari hasil pengujian frekuensi 500 Hz dapat dilihat pada gambar 4.6 dibawah ini:

Gambar 4. 7 Grafik Frekuensi 500 Hz

Measure

Vpp
1: 1.84U
2: chan off

Vavg
1: -40.0mU
2: chan off

Frequency
1: 505.1Hz
2: chan off

Duty Cycle
1: 52.53%
2: chan off

Vrms
1: 599mU
2: chan off

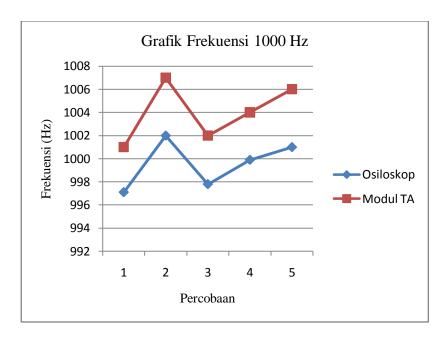
Orms
1: 599mU
2: chan off

Orms
1: 599mU
2: chan off

Orms
1: 599mU
2: chan off

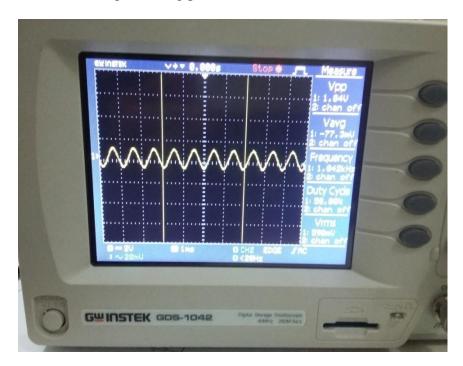
Berikut ini adalah bentuk gelombang pada frekuensi 500 Hz.

Gambar 4. 8 Bentuk gelombang frekuensi 500 Hz


d. Frekuensi 1000 Hz

Hasil analisis dan pengukuran pada frekuensi 1000 Hz dapat dilihat pada tabel 4.4 dibawah ini:

Tabel 4. 4 Hasil Pengukuran Frekuensi 1000 Hz

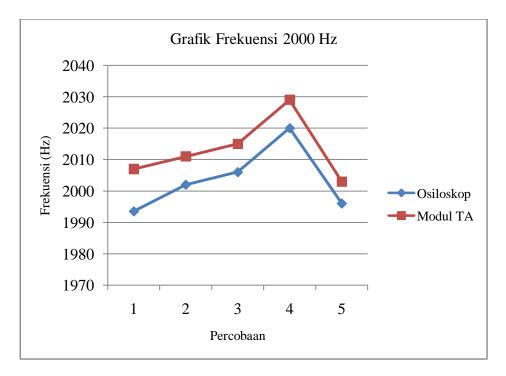

Frekuensi	Percobaan	Hasil Percobaan		Selisih
FIERUEIISI	Percobaan	Osiloskop	Modul TA	Selisili
	1	997,1 Hz	1001 Hz	3,9 Hz
	2	1002 Hz	1007 Hz	5 Hz
1000 Hz	3	997,8 Hz	1002 Hz	4,2 Hz
	4	999,9 Hz	1004 Hz	4,1 Hz
	5	1001 Hz	1006 Hz	5 Hz
Rata	-rata	999,6 Hz	1004 Hz	4,4 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 5 Hz pada percobaan ke 2 dan 5 dan selisih terendah yaitu 3,9 Hz pada percobaan ke 1. Hasil ratarata yang didapat alat pembanding adalah 999,6 Hz, sedangkan rata-rata selisihnya 4,4 Hz. Grafik dari hasil pengujian frekuensi 1000 Hz dapat dilihat pada gambar 4.7 dibawah ini:

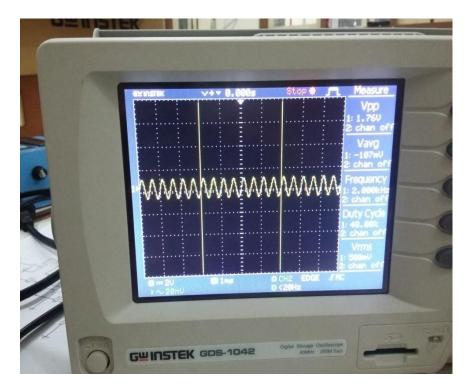
Gambar 4. 9 Grafik Frekuensi 1000 Hz

Berikut ini adalah bentuk gelombang pada frekuensi 1000 Hz.

Gambar 4. 10 Bentuk gelombang frekuensi 1000 Hz


e. Frekuensi 2000 Hz

Hasil analisis dan pengukuran pada frekuensi 2000 Hz dapat dilihat pada tabel 4.5 dibawah ini :


Tabel 4. 5 Hasil Pengukuran Frekuensi 2000 Hz

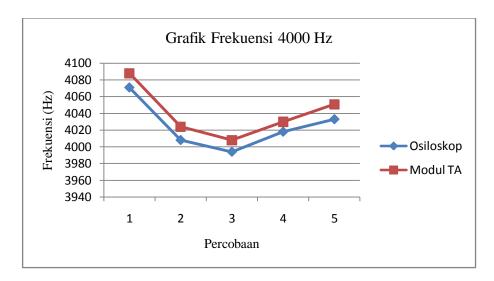
Frekuensi	Percobaan	Hasil Percobaan		Selisih
Pickuciisi	reicobaan	Osiloskop	Modul TA	Selisili
	1	1993,5 Hz	2007 Hz	13,5 Hz
	2	2002 Hz	2011 Hz	9 Hz
2000 Hz	3	2006 Hz	2015 Hz	9 Hz
	4	2020 Hz	2029 Hz	9 Hz
	5	1996 Hz	2003 Hz	7 Hz
Rata-rata		2003,5 Hz	2013 Hz	9,5 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 13,5 Hz pada percobaan ke 1 dan selisih terendah yaitu 7 Hz pada percobaan ke 5. Hasil rata-rata yang didapat alat pembanding adalah 2003,5 Hz, sedangkan rata-rata selisihnya 9,5 Hz. Grafik dari hasil pengujian frekuensi 2000 Hz dapat dilihat pada gambar 4.8 dibawah ini .

Gambar 4. 11 Grafik Frekuensi 2000 Hz

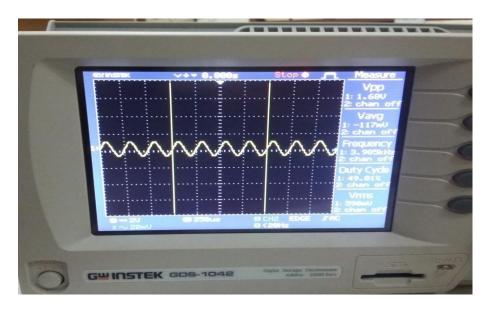
Berikut ini adalah bentuk gelombang pada frekuensi 2000 Hz.

Gambar 4. 12 Bentuk gelombang frekuensi 2000 Hz


f. Frekuensi 4000 Hz

Hasil analisis dan pengukuran pada frekuensi 4000 Hz dapat dilihat pada tabel 4.6 dibawah ini :

Tabel 4. 6 Hasil Pengukuran Frekuensi 4000 Hz

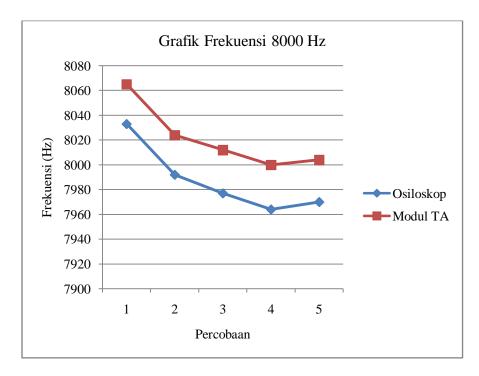

Frekuensi	Percobaan	Hasil Per	Selisih	
FIERUEIISI	Percobaan	Osiloskop	Modul TA	Selisili
	1	4071 Hz	4088 Hz	17 Hz
	2	4008 Hz	4024 Hz	16 Hz
4000 Hz	3	3994 Hz	4008 Hz	14 Hz
	4	4018 Hz	4030 Hz	12 Hz
	5	4033 Hz	4051 Hz	18 Hz
Rata-rata		4024,8 Hz	4040,2 Hz	15,4 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 18 Hz pada percobaan ke 5 dan selisih terendah yaitu 12 Hz pada percobaan ke 4. Hasil rata-rata yang didapat alat pembanding adalah 4024,8 Hz, sedangkan rata-rata selisihnya 15,4 Hz. Grafik dari hasil pengujian frekuensi 4000 Hz dapat dilihat pada gambar 4.9 dibawah ini:

Gambar 4. 13 Grafik Frekuensi 4000 Hz

Berikut ini adalah bentuk gelombang pada frekuensi 4000 Hz.

Gambar 4. 14 Bentuk gelombang frekuensi 4000 Hz


g. Frekuensi 8000 Hz

Hasil analisis dan pengukuran pada frekuensi 8000 Hz dapat dilihat pada tabel 4.7 dibawah ini:

Tabel 4. 7 Hasil Pengukuran Frekuensi 8000 Hz

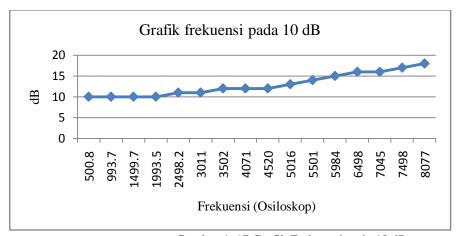
Frekuensi	Percobaan	Hasil Percobaan		Caliaib
FIERUEIISI		Osiloskop	Modul TA	Selisih
	1	8033 Hz	8065 Hz	32 Hz
8000 Hz	2	7992 Hz	8024 Hz	32 Hz
	3	7977 Hz	8012 Hz	36 Hz
	4	7964 Hz	8000 Hz	36 Hz
	5	7970 Hz	8004 Hz	34 Hz
Rata	-rata	7987,2 Hz	8021 Hz	34 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 36 Hz pada percobaan ke 3 dan 4 sedangkan selisih terendah yaitu 32 Hz pada percobaan ke 1 dan 2. Hasil rata-rata yang didapat alat pembanding adalah 7987,2 Hz, sedangkan rata-rata selisihnya 34 Hz. Grafik dari hasil pengujian frekuensi 8000 Hz bisa dilihat pada gambar 4.10 dibawah ini :

Gambar 4. 15 Grafik Frekuensi 8000 Hz

Berikut ini adalah bentuk gelombang pada 8000 Hz

Gambar 4. 16 Bentuk gelombang frekuensi 8000 Hz

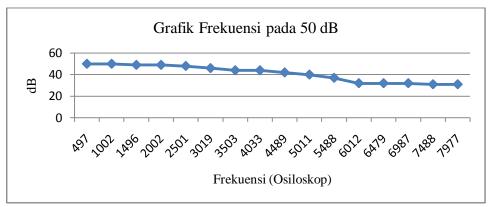

h. Pengukuran Frekuensi pada 10 dB

Berikut ini adalah tabel pengukuran frekuensi pada 10 dB.

Tabel 4. 8 Tabel pengukuran frekuensi pada 10 dB

frekuensi		
Osiloskop	dB	
500,8 Hz	10	
993,7 Hz	10	
1499,7 Hz	10	
1993,5 Hz	10	
2498,2 Hz	11	
3011 Hz	11	
3502 Hz	12	
4071 Hz	12	
4520 Hz	12	
5016 Hz	13	
5501 Hz	14	
5984 Hz	15	
6498 Hz	16	
7045 Hz	16	
7498 Hz	17	
8077 Hz	18	
	Osiloskop 500,8 Hz 993,7 Hz 1499,7 Hz 1993,5 Hz 2498,2 Hz 3011 Hz 3502 Hz 4071 Hz 4520 Hz 5016 Hz 5501 Hz 5984 Hz 6498 Hz 7045 Hz 7498 Hz	

Berdasarkan tabel diatas, nilai frekuensi sangat berpengaruh terhadap nilai dB yang tertampil pada modul TA, semakin besar nilai frekuensinya maka dBnya akan naik dari nilai yang ditetapkan sebelumnya. Kenaikan terjadi pada frekuensi 2007 Hz, yang mulanya 10 dB menjadi 11 dB. Kenaikan tertinggi terjadi pada frekuensi 8112 Hz menjadi 18 dB. Berikut ini adalah grafik dari frekuensi pada 10dB.

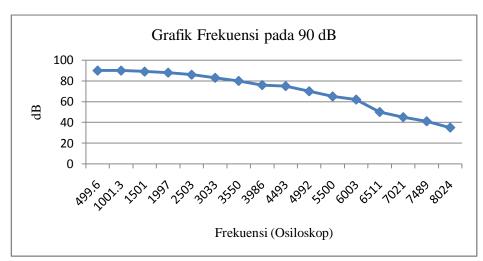

Gambar 4. 17 Grafik Frekuensi pada 10 dB

i. Pengukuran frekuensi pada 50 dB

Tabel 4. 9 Tabel Pengukuran Frekuensi pada 50 dB

	Frekuensi	10
Modul TA	Osiloskop	dB
500 Hz	497 Hz	50
1007 Hz	1002 Hz	50
1502 Hz	1496 Hz	49
2011 Hz	2002 Hz	49
2513 Hz	2501 Hz	48
3030 Hz	3019 Hz	46
3523 Hz	3503 Hz	44
4051 Hz	4033 Hz	44
4514 Hz	4489 Hz	42
5034 Hz	5011 Hz	40
5509 Hz	5488 Hz	37
6036 Hz	6012 Hz	32
6501 Hz	6479 Hz	32
7018 Hz	6987 Hz	32
7509 Hz	7488 Hz	31
8012 Hz	7977 Hz	31

Berdasarkan tabel diatas, nilai frekuensi sangat berpengaruh terhadap nilai dB yang tertampil pada modul TA, semakin besar nilai frekuensinya maka dBnya turun dari nilai yang ditetapkan sebelumnya. Penurunan terjadi pada 1502 Hz, yang mulanya 50 dB menjadi 49 dB. Semakain besar frekuensi semakin turun juga nilai dBnya. Sampai pada frekuensi 8012 Hz menjadi 31 dB. Berikut ini adalah grafik dari frekuensi pada 50 dB.


Gambar 4. 18 Grafik frekuensi pada 50 dB

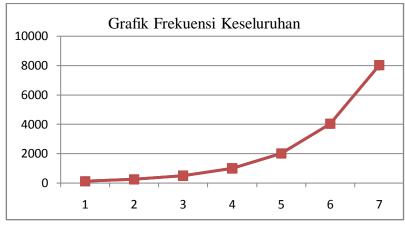
j. Pengukuran Frekuensi pada 90 dB

Tabel 4. 10 Tabel pengukuran frekuensi pada 90 dB

Tabel 4. 10 Tabel peligukt	iran nekuensi pada 90 db	
Fı	dB	
Modul TA	Osiloskop	uБ
502	499,6	90
1006	1001,3	90
1507	1501	89
2005	1997	88
2517	2503	86
3020	3005	83
3550	3533	80
4000	3986	76
4504	4493	75
5011	4992	70
5520	5500	65
6029	6003	62
6533	6511	50
7040	7021	45
7509	7489	41
8050	8024	35

Berdasarkan tabel diatas, nilai frekuensi sangat berpengaruh terhadap nilai dB yang tertampil pada modul TA, semakin besar nilai frekuensinya maka dBnya turun dari nilai yang ditetapkan sebelumnya. Penurunan terjadi pada 1507 Hz, yang mulanya 90 dB menjadi 89 dB. Semakain besar frekuensi semakin turun juga nilai dBnya. Sampai pada frekuensi 8050 Hz menjadi 35 dB. Berikut ini adalah grafik dari frekuensi pada 90 dB.

Gambar 4. 19 Grafik pengukuran frekuensi pada 90 dB


k. Kesimpulan Pengujian Frekuensi

Setelah mengumpulkan data diatas dapat disimpulkan data frekuensi sebagai berikut :

Tabel 4. 11 Kesimpulan pengujian frekuensi

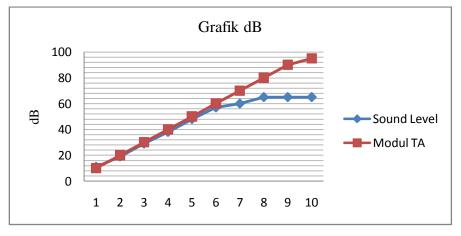
Frekuensi	Osiloskop	Modul TA
125	124,48 Hz	125 Hz
250	249,28 Hz	250 Hz
500	500,4 Hz	503 Hz
1000	999,6 Hz	1004 Hz
2000	2003,5 Hz	2013 Hz
4000	4024,8 Hz	4040,2Hz
8000	7987,2 Hz	8021 Hz

Berdasarkan tabel data diatas, selisih antara nilai pada Modul TA dan osiloskop tidak besar. Sehingga sensitifitas dari alat sangat mendekati akurat. Grafik frekuensi keseluruhan dapat dilihat pada gambar dibawah ini:

Gambar 4. 20 Grafik frekuensi keseluruhan

Berdasarkan grafik diatas nilai frekuensi modul TA tidak berbeda jauh dengan osiloskop. Grafik dari frekuensi modul TA dan osiloskop sangat *linear*.

4.2.3 Pengukuran Intensitas Suara (dB) pada Alat


Pada pengukuran intensitas suara, penulis mengukur dB yang tertampil di LCD dan membandingkannya dengan *sound level*. Alasan menggunakan *sound level* adalah untuk mengukur seberapa besar nilai dB yang keluar dari *headset*. Hasil dari pengukuran intensitas suara pada modul TA dan *soud level* dapat dilihat pada tabel 4.9 dibawah ini:

Tabel 4. 12 Hasil Pengukuran Intensitas Suara

Modul TA	Sound Level
10	11
20	19
30	29
40	38
50	48
60	57
70	68
80	75
90	78
95	80

Nilai dB pada modul TA dan *sound level* terdapat perbedaan. Perbedaaan tersebut terjadi pada saat nilai dB pada modul TA lebih dari 60 dB. Nilai dB pada modul TA tidak sesui dengan nilai pada *sound level*. Ada beberapa penyebab dari perbedaan nilai tersebut seperti *headset* yang digunakan dan tempat pengujian. Headset yang digunakan impedansinya 22 Ohm, sedangkan standar ANSI yaitu 10 Ohm, sehingga bunyi yang di keluarkan kurang keras karena besarnya nilai impedansi.

Grafik dari tabel dB dapat dilihat pada gambar 4.11 dibawah ini:

Gambar 4. 21 Grafik nilai dB

Berdasarkan tabel diatas, nilai dB pada modul TA dan alat pembanding *sound level* tidak sama. Pada gambar terlihat grafik *sound level* melengkung, jadi pada saat dB modul TA lebih dari 60 dB maka nilai perubahan dB pada sound level semakin kecil dan cenderung sama. Sehingga grafiknya melengkung. Penyebab dari tidak stabilnya pembacaan dB pada modul TA adalah karna mikro dengan spesifikasi yang penulis pakai tidak mampu mengolah data pada frekuessi tinggi. Untuk membuktikan kesalahan pembacaan dB pada LCD maka dilakukan pengukuran pada tegangan masuk (*Vin*) dan tegangan keluar (*Vout*) pada yang terhubung ke rangkaian *minimum system* yang digunakan untuk menghitung nilai dB. Berikut adalah tabel nilai tegangan bedasarkan nilai dB yang tertampil pada LCD.

a. Pada frekuensi 125 Hz

Nilai tegangan yang terukur pada frekuensi 125 Hz.

Tabel 4. 13 Tabel nilai tegangan pada 125 Hz

dB (LCD)	Vin	Vout
10		31,9 mV
15		330 mV
20		421 mV
25		770 mV
30		995 mV
35		1,20 V
40		1,31 V
45		1,66 V
50	400 mV	1,77 V
55	400 III v	2,08 V
60		2,27 V
65		2,65 V
70		2,88 V
75		3,20 V
80		3,48 V
85		3,80 V
90		4,25 V
96		4,73 V

b. Pada Frekuensi 250

Nilai tegangan yang terukur pada frekuensi 250 Hz.

Tabel 4, 14 Tabel nilai tegangan pada 250 Hz

Tabel 4. 14 Tabel final tegangan pada 250 Hz						
dB (LCD)	Vin	Vout				
10		38,8 mV				
15		233 mV				
19		408 mV				
25	1	650,9mV				
30	1	871 mV				
35	1	1,07 V				
40		131 V				
45		153 V				
50	400 V	178 V				
55	400 mV	2,03 V				
60		2,35 V				
65		2,64 V				
70		2,85 V				
75	1	3,21 V				
80		3,50 V				
85		3,81 V				
90		4,21 V				
96		4,55 V				

c. Pada frekuensi 500 Hz

Tabel pengukuran tegangan pada frekuensi 500 Hz sebagai berikut :

Tabel 4. 15 Tabel pengukuran tegangan pada frekuensi 500 Hz

dB (LCD)	Vin	Vout
10		41,4 mV
15		227 mV
20		413 mv
25		671 mV
30		872 mV
35		1,07 V
40		1,31 V
45		1,60 V
50	400 mV	1,84 V
55	400 III v	2,09 V
60		2,35 V
65		2,63 V
70		2,93 V
75		3,18 V
80		4,18 V
85		4,58 V
90		4,82 V
96		5,30 V

d. Pengukuran dB pada frekuensi 1000 Hz

Tabel pengukuran tegangan pada frekuensi 1000 Hz sebagai berikut :

Tabel 4. 16 Tabel pengukuran tegangan pada frekuensi 1000 Hz

dB (LCD)	Vin	Vout
10		33,7 mV
15		280 mV
20		436 mV
25		663 mV
30		859 mV
35		1,08 V
40		1,28 V
45	400 mV	1,60 V
50		1,85 V
55 60		2,08 V
		2,40 V
65		2,73 V
70		3,05 V
75		3,39 V
80		3,71 V
85		4,00 V
90		4,33 V
95		4,76 V

e. Pengukuran dB pada 2000 Hz

Tabel pengukuran tegangan pada frekuensi 2000 Hz sebagai berikut :

Tabel 4. 17 Tabel pengukuran tegangan pada frekuensi 2000 Hz

dB (LCD)	Vin	Vout
10		40,07 mV
15		261 mV
20		456 mV
25		663 mV
30,		970 mV
35		1,19 V
40		1,43 V
45		1,68 V
50	400 mV	1,97 V
55	400 III V	2,22 V
60		2,45 V
65		2,76 V
70		3,20 V
75		3,46 V
80		3,85 V
85 90 95		4,25 V
		4,61 V
		4,79 V

f. Pengukuran dB pada 4000 Hz

Tabel pengukuran tegangan pada frekuensi 500 Hz sebagai berikut :

Tabel 4. 18 Tabel pengukuran tegangan pada frekuensi 4000

dB (LCD)	Vin	Vout
12		17,7 mV
15		155 mV
20		448 mV
25		680 mV
30		1,03 V
35		1,27 V
40		1,54 V
45	400 mV	1,93 V
50	400 mV	2,22 V
55		2,56 V
60		2,87 V
65		3,20 V
70		3,61 V
75		3,99 V
80		4,55 V
82		4,67 V

g. Pengukuran dB pada frekuensi 8000 Hz

Tabel pengukuran tegangan pada frekuensi 500 Hz sebagai berikut :

Tabel 4. 19 Tabel pengukuran tegangan pada frekuensi 8000 Hz

dB (LCD)	Vin	Vout
18		112 mV
20		416 mV
25	400 mV	1,10 V
30		1,62 V
35		4,70 V
35		5,42 V

4.3 Pengujian pada Pasien

Penulis melakukan uji modul pada pasien. Pengujian dilakukan pada 5 orang pasien dengan 1 kali pengambilan data. Pada umumnya titik pemeriksaan pertama kali pada frekuensi 1000 Hz, dengan intensitas suara (dB) awal yaitu 40 dB. Jika pasien tidak mendengar maka akan dinaikkan 20 dB, tetapi jika pasien mendengar maka akan diturunkan 10 dB. Kemudian naik ke frekuensi 2500 Hz sampai ke frekuensi 8000 Hz. Kemudian dari frekuensi 8000 Hz, turun ke frekuensi 500 Hz, turun lagi sampai ke frekuensi 250 Hz.

a. Pengambilan Data Penujian pada Frekuensi 125 Hz

Pengujian data pada frekuensi 125 Hz dapat dilihat pada tabel 4.20 dibawah ini:

Tabel 4. 20 Tabel Data Pengujian pada 125 Hz

No	Nama	Umur	Intensitas (dB)	Kiri	Kanan
			10	V	V
			20	\checkmark	$\sqrt{}$
1	Raisa	6 tahun	30	\checkmark	$\sqrt{}$
			40	$\sqrt{}$	$\sqrt{}$
			50	$\sqrt{}$	$\sqrt{}$
		13 tahun	10	$\sqrt{}$	$\sqrt{}$
			20	\checkmark	
2	Rolland		30	\checkmark	
			40	\checkmark	
			50	$\sqrt{}$	$\sqrt{}$
			10	$\sqrt{}$	$\sqrt{}$
3	Bhaskoro	21 tahun	20	$\sqrt{}$	$\sqrt{}$
			30	$\sqrt{}$	$\sqrt{}$

			40	$\sqrt{}$	$\sqrt{}$
			50	$\sqrt{}$	\checkmark
			10	$\sqrt{}$	\checkmark
			20	$\sqrt{}$	\checkmark
4	4 Ningsih	37 tahun	30	$\sqrt{}$	$\sqrt{}$
			40	$\sqrt{}$	\checkmark
			50	$\sqrt{}$	\checkmark
			10	ı	ı
			20	\checkmark	$\sqrt{}$
5	Imam	63 tahun	30	$\sqrt{}$	$\sqrt{}$
			40	$\sqrt{}$	$\sqrt{}$
			50	$\sqrt{}$	$\sqrt{}$

Dari tabel diatas dapat dilihat pada frekuensi 125 Hz dan intensitas (dB) yagn diujiakan, kelima pasien bisa mendengarkan suara yang dihasilkan oleh modul. Kecuali atas nama Imam, tidak dapat mendengar pada 10 dB. Karena pada usia tua fungsi pendengaran menurun.

b. Pengambilan Data Pengujian pada Frekuensi 4000 Hz

Pengujian data pada frekuensi 4000 Hz dapat dilihat pada tabel 4.21 dibawah ini:

Tabel 4. 21 Tabel Data Pengujian pada Frekuensi 4000 Hz

No	Nama	Umur	Intensitas (dB)	Kiri	Kanan
			10	V	
			20	V	$\sqrt{}$
1	Raisa	6 tahun	30	V	$\sqrt{}$
			40		$\sqrt{}$
			50	$\sqrt{}$	$\sqrt{}$
			10	V	$\sqrt{}$
			20	$\sqrt{}$	$\sqrt{}$
2	Rolland	13 tahun	30	$\sqrt{}$	$\sqrt{}$
			40	$\sqrt{}$	$\sqrt{}$
			50	$\sqrt{}$	$\sqrt{}$
			10	$\sqrt{}$	$\sqrt{}$
			20	$\sqrt{}$	$\sqrt{}$
3	Bhaskoro	21 tahun	30	$\sqrt{}$	$\sqrt{}$
			40	V	$\sqrt{}$
			50	$\sqrt{}$	$\sqrt{}$
			10	$\sqrt{}$	$\sqrt{}$
4	Ningsih	37 tahun	20	$\sqrt{}$	$\sqrt{}$
			30		$\sqrt{}$

			40		
			50	$\sqrt{}$	$\sqrt{}$
		10	ı	ı	
		20	$\sqrt{}$	$\sqrt{}$	
5	5 Imam	63 tahun	30	$\sqrt{}$	\checkmark
		40	$\sqrt{}$	\checkmark	
			50	$\sqrt{}$	\checkmark

Dari tabel diatas dapat dilihat pada frekuensi 4000 Hz dan intensitas (dB) yagn diujiakan, kelima pasien bisa mendengarkan suara yang dihasilkan oleh modul. Kecuali atas nama Imam, tidak dapat mendengar pada 10 dB. Karena pada usia tua fungsi pendengaran menurun.

c. Pengambilan Data Pengujian pada Frekuensi 8000 Hz

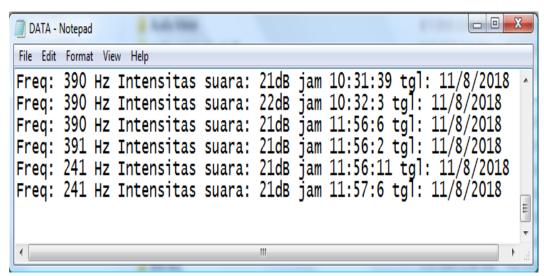
Tabel 4. 22 Tabel Data Pengujian Pada Frekuensi 4000 Hz

No	Nama	Umur	Intensitas (dB)	Kiri	Kanan
			10	V	
1	Raisa	6 tahun	20	V	V
			30	V	V
			40	V	V
			50	V	V
			10	V	V
		13 tahun	20	V	V
2	Rolland		30	V	V
			40	V	V
			50	V	V
	Bhaskoro	21 tahun	10	V	V
			20	V	V
3			30	V	V
			40	V	V
			50	V	V
	Ningsih	37 tahun	10	V	V
			20	V	V
4			30	V	V
			40	V	V
			50	V	V
	Imam	63 tahun	10	-	-
			20	V	V
5			30	V	V
			40	V	V
			50	V	V

Dari tabel diatas dapat dilihat pada frekuensi 8000 Hz dan intensitas (dB) yagn diujiakan, kelima pasien bisa mendengarkan suara yang dihasilkan oleh modul. Kecuali atas nama Imam, tidak dapat mendengar pada 10 dB. Karena pada usia tua fungsi pendengaran menurun.

4.4 Uraian Hasil Pengujian

Tabel 4. 23 Hasil analisis data frekuensi


Pengujian	Frekuensi	Hasil Analisis Data			
Fengujian		Rata-rata	Simpangan	Error	
1	125	124,4	0,6	0,48%	
2	250	249,28	0,72	0,288%	
3	500	497,4	2,6	0,52%	
4	1000	1005,2	5,2	0,52%	
5	2000	2013,8	13,8	0,68%	
6	4000	3979	21	0,528%	
7	8000	7964,2	36	0,45%	

Pada table 4. 23 di atas pengujian pertama, dilakukan pada pengukuran frekuensi sebesar 125 Hz dan didapatkan rata-rata frekuensi 124,4 Hz dengan nilai *error* 0,48%. Pengujian kedua dilakukan pada pengukuran frekuensi sebesar 250 Hz dan didapatkan rata-rata frekuensi 249,28 Hz dengan nilai *error* 0,288%. Pengujian ketiga dilakukan pada pengukuran frekuensi 500 Hz dan didapatkan rata-rata frekuensi 497,4 dengan *error* sebesar 0,52%. Pengujian keempat dilakukan pada pengukuran frekuensi 1000 Hz dan didapatkan rata-rata frekuensi 1005,2 Hz dengan nilai *error* sebesar 0,52%. Pengujian kelima dilakukan pada pengukuran frekuensi 2000 Hz dan didapatkan rata-rata frekuensi 2013,8 Hz dengan nilai *error* sebesar 0,68%. Pengujian keenam dilakukan pada pengukuran frekuensi 4000 Hz dan didapatkan rata-rata frekuensi 3979 Hz dengan nilai *error* sebesar 0,528%. Pengujian ketujuh dilakukan pada pengukuran frekuensi 8000 Hz dan didapatkan rata-rata frekuensi 7964 Hz dengan nilai *error* sebesar 0,45%.

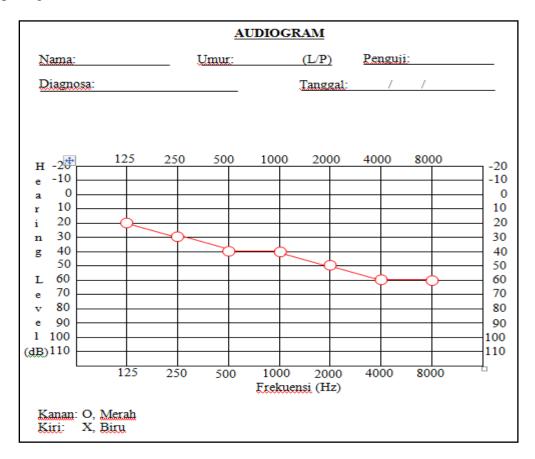
Pada pengukuran dB, nilainya mengalami penurunan pada frekuensi diatas 2000 Hz. Tetapi pada saat dilakukan pengukuran pada tegangan keluaran tidak mengalami penurunan baik pada saat frekuensi rendah maupun tinggi. Berarti pembacaan dB oleh mikro tidak stabil pada frekuensi tinggi karena spesifikasi dari mikro itu sendiri. Pada saat pengukuran dB dengan *sound level* nilainya tidak berbeda begitu jauh. Tetapi nilainya mulai berbeda jauh pada saat dB diatas 70. Nilai dB yang terukur berdasarkan keluaran dari *headphone* yang telah penulis modifikasi. Kemungkinan nilainnya berubah pada saat menggunakan *headphone* dari luar.

4.5 Hasil Data yang Tersimpan pada SD Card

Pada saat frekuensi dan intensitas bunyi (dB) yang terdengar oleh pasien lalu ditekan tombol *save*, maka frekuensi dan dB yang tertampil pada LCD akan tersimpan ke SD *card*. Gambar 4.15 menunjukan tampilan data yang tersimpan pada SD *card*.

Gambar 4. 22 Tampilan data yang tersimpan pada SD card

Format file yang tersimpan di *micro sd* adalah ".txt". Dengan ukuran file sebesar 2KB. Data yang tersimpan yaitu nilai frekuensi dan intensitas suara (dB) serta tanggal pengetesan.


4.6 Contoh Lembar Audiogram

Berikut ini adalah bentuk dari audiogram yang biasa diisi secara manual oleh penguji pada tes pendengaran, seperti pada gambar 4.23 berikut ini.

AUDIOGRAM									
Nama:	Umur:	(L/P)	Penguji:						
Diagnosa:		Tanggal:	/ /						
H -20 e -10 a 0 r 10 i 20 n 30 g 40 50 L 60 e 70 v 80 e 90 l 100 (dB)110		1000 2000	4000 8000 -20 -10 0 10 20 30 40 50 60 70 80 90 110))))))))))))					
125 250 500 1000 2000 4000 8000 Frekuensi (Hz)									
Kanan: O, Merah Kiri: X, Biru									

Gambar 4. 23 Lembar Audiogram

Berikut ini adalah contoh hasil tes pendengaran yang sudah diisikan pada audiogram, dapat dilihat pada gambar 2.24.

Gambar 4. 24 Audiogram yang sudah diisi hasil tes

Dari audiogram dia atas dapat dipastikan bahwa telinga kanan pasien mengalami gangguan pengengaran sedang karena pasien mendengar semua frekuensinya diatas 25 dB sampai 60 dB.

4.7 Kelebihan dan Kekurangan

4.7.1 Kelebihan

- a. Alat sudah *portabel* sehingga bisa digunakan dimana saja tanpa terhubung ke listrik PLN.
- b. Alat dilengkapi penyimpanan data frekuensi dan desibel yang diujikan, sehingga memudahkan pengguna untuk melihat kembali data tesnya.
- c. Memiliki tingkat keakuratan frekuensi yang tinggi dengan nilai error dibawah 1%.

4.4.2 Kekurangan

- a. Alat belum dilengkapi audiogram, sehingga pengisian audiogram masih manual.
- b. Alat tidak bisa terhubung dengan komputer.
- c. Penyimpanan data belum dilengkapi nama pasien.
- d. Jenis *headphone* sangat berpengaruh terhadap bunyi keluaran.