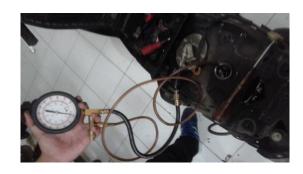
BAB IV


HASIL DAN PEMBAHASAN

4.1 Hasil Analisis Sistem EFI Sepeda Motor Suzuki Nex FI

Setelah melakukan proses analisis dan pembongkaran pada komponen sepeda motor suzuki Nex Fi sebuah kerusakan dapat di identifikasi dan bisa dilakukan perbaikan, adapun diperoleh hasil analisis pada sepeda motor suzuki Nex Fi sebagai berikut :

4.1.1. Hasil Dari Analisis FuelSystem

- Pemeriksaan tekanan pompa bahan bakar didapatkan hasil sebagai berikut :
 - a. Standar pengukuran :265 kPa 294 kPa
 - b. Hasil pengukuran : 290 kPa
 - c. Kesimpulan : dari hasil pengukuran tekanan bahan bakar yang dilakukan menggunakan *Fuel pressure gauge*, tekanan pompa bahan bakar masih mendekati standar dan masih layak untuk digunakan.

Gambar 4.1 Pemeriksaan Tekanan Bahan Bakar

"Menurut gambar 4.1 : Pemeriksaan tekanan bahan bakar dilakukan menggunakan alat *Fuel Pressure Gauge* yang dipasangkan pada saluran keluar menuju selang bahan bakar pada pompa, nantinya alat tersebut akan menunjukan tekanan bahan bakar saat kunci kontak ON"

2. Pemeriksaan aliran bahan bakar didapatkan hasil sebagai berikut :

- a. Siapkan alat seperti gelas ukur, kabel jumper, dan stopwatch.
- b. Lepas konektor pada Fuel Pump
- c. Hubungkan kabel jumper dengan terminal yang ada pada soket *Fuel Pump* dengan baterai.
- d. Lakukan pengukuran dengan menggunakan gelas ukur dan timer *stopwatch*.

e. Standar pengukuran : 100cc/10detik

f. Hasil pengukuran : 100cc/10detik

- g. Kesimpulan : dari hasil pengukuran aliran bahan bakar menggunakan *Fuel pressure gauge*, diperoleh hasil aliran bahan bakar masih sesuai standar, bisa disimpulkan bahwa pompa bahan bakar masih bagus.
- 3. Pemeriksaan komponen kelistrikan bahan bakar didapatkan hasil sebagai berikut :

Tabel 4.1 Komponen Kelistrikan Bahan Bakar

No	Nama Komponen	Standar	Hasil Pengukuran
1	Baterai	12 V	13 V
2	Sekering	Berhubungan/15A	Berhubungan/15A
3	Kunci kontak	Berhubungan saat	Berhubungan saat
		posisi ON	posisi ON
4	Pompa BBM	Berhubungan	Berhubungan

Kesimpulan : dari pemeriksaan komponen kelistrikan bahan bakar diatas menunjukan bahwa komponen kelistrikan bahan bakar masih bagus dan layak pakai.

4. Pemeriksaan hubungan kabel rangkaian kelistrikan bahan bakar :

Tabel 4.2 Hubungan Kabel Rangkaian Kelistrikan Bahan Bakar

No	Nama komponen	Standar	Hasil pengukuran	Warna kabel
1	Baterai - sekering	Berhubungan	Berhubungan	Merah
2	Sekering - kunci kontak	Berhubungan	Berhubungan	Merah
3	Kunci kontak - fuel pump	Berhubungan	Berhubungan	Orange
4	Fuel pump - ECM	Berhubungan	Berhubungan	Kuning
5	ECM - massa	Berhubungan	Berhubungan	Hitam/putih

Kesimpulan : dari hasil pemeriksaan diatas dapat disimpulkan bahwa hubungan kabel rangkaian kelistrikan bahan bakar masih bagus.

5. pemeriksaan injektor didapatkan hasil sebagai berikut :

a. Standar : 12,2 Ω pada suhu 25 °C

b. Hasil pengukuran : 12,6 Ω

c. Injektor memiliki 4 buah lubang

d. Kesimpulan : injektor masih bagus dan masih layak pakai

6. pemeriksaan hubungan kabel rangkaian kelistrikan injektor didapatkan hasil sebagai berikut :

Tabel 4.3 Hubungan Kabel Rangkaian Kelistrikan Injektor

NT.	NT.	Standar	Hasil	Warna
No	Nama komponen	pengukuran	pengukuran	kabel
1	Baterai - sekering	Berhubungan	Berhubungan	Merah
2	Sekering - kunci	Berhubungan	Berhubungan	Merah
	kontak			
3	Kunci kontak -	Berhubungan	Berhubungan	Orange
	injektor			
4	Injektor – ECM	Berhubungan	Berhubungan	Abu-
				abu/putih
5	ECM – massa	Berhubungan	Berhubungan	Hitam/putih

Kesimpulan : dari hasil pemeriksaan diatas dapat disimpulkan bahwa rangkaian kelistrikan hubungan kabel injektor masih bagus.

4.1.2 Hasil Dari Analisis Sistem Induksi Udara

- Dari pemeriksaan saringan udara didapatkan hasil sebagai berikut:
 - a. Standar: saringan tidak hitam dan harus bersih
 - b. Hasil pengecekan: saringan udara sudah menghitam

- c. Kesimpulan : saringan udara harus diganti karena sudah tidak bisa dibersihkan dan warnanya sudah menghitam.
- 2. Hasil dari pemeriksaan TPS (*Throttel Position Sensor*)didapatkan hasil sebagai berikut :
 - a. Putar kunci kontak OFF
 - b. Lepas soket TPS
 - c. Kunci kontak ON
 - d. Ukur tegangan input pada kabel "R (merah)" dapat (+) multi dan kabel "B/Br (hitam/coklat)" dapat (-) multitester
 - e. Tegangan input standar TPS: 4.5 V 5.5 V
 - f. Hasil pengukuran: 4,93 V
 - g. Kesmpulan : sensor TPS masih bagus dan layak pakai, hasil pengukuran masih mendekati standar
- Pemeriksaan hubungan kabel rangkaian TPS dengan ECM didapatkan hasil sebagai berikut :

Tabel 4.4 Hubungan Kabel Rangkaian TPS dengan ECM:

Kabel di TPS	Kabel di ECM	standar	Hasil pengukuran
Merah	Merah	Berhubungan	Berhubungan
Ungu	Ungu	Berhubungan	Berhubungan
Hitam/coklat	Hitam/coklat	Berhubungan	Berhubungan

- 4. Pemeriksaan output TPS dengan kabel "Y" didapat hasil sebagai berikut :
 - a. Lepas soket TPS
 - b. Pengecekan tegangan TPS

Tabel 4.5 Tegangan Output TPS.

Posisi Throttel	Warna kabel TPS	Standar	Hasil
valve			pengukuran
Tertutup	P(+) - hitam/coklat	± 0,7 V	0,6 V
Terbuka	P(+) – hitam/coklat	± 3,9 V	3,84 V

Kesimpulan : Dari hasil pengukuran menunjukan bahwa sensor TPS masih bagus dan layak pakai karena hasil pengukuran menunjukan masih sesuai dengan standar

Gambar 4.2 Pemeriksaan TPS

"Menurut gambar 4.2 : pemeriksaan tegangan sensor TPS dilakukan menggunakan kabel multitester dan kabel Y"

- 5. Hasil dari pemeriksaan IAPS (Intake Air Pressure Sensor)
 - a. Putar kunci kontak OFF
 - b. Lepas soket IAPS
 - c. Putar kunci kontak ON
 - d. Ukur tegangan input IAPS pada kabel "R (merah)" dapat(+) multi dan kabel "B/Br (Hitam/coklat)" dapat (-) multi
 - e. Standar pengukuran : 4,5 V 5,5 V
 - f. Hasil pengukuran: 4,93
- 6. Pemeriksaan hubungan kabel rangkaian IAPS dengan ECM : Tabel 4.6 Hubungan Kabel Rangkaian IAPS dengan ECM

		G. I	Hasil
Kabel di IAPS	Kabel di ECM	Standar	pengukuran
Merah	Merah	Berhubungan	Berhubungan
Hijau/hitam	Hijau/hitam	Berhubungan	Berhubungan
Hitam/coklat	Hitam/coklat	Berhubungan	Berhubungan

Kesimpulan : Dari hasil pengecekan komponen ECM/ECU, menunjukan bahwa ECU masih bagus

- 7. Pemeriksaan tegangan output IAPS dengan kabel "Y"
 - a. Melepas soket IAPS
 - b. Pengecekan tegangan output pada IAPS:

Tabel 4.7 Tegangan Output IAPS

Posisi putaran	Warna kabel	Standar	Hasil
mesin	IAPS		pengukuran
idle	Hijau/hitam (+) –	± 0,789 –	1,8 V
	hitam/coklat (-)	4,0 V	

Kesimpulan : dari hasil pemeriksaan dan pengukuran komponen IAPS, IAPS masih bagus dan masih layak pakai hasil pengukuran masih mendekati standar. Jika terjadi kerusakan pada IAPS harus mengganti *Throttel Body*

- 8. Hasil Pemeriksaan IATS (Intake Air Temperature Sensor):
 - a. Putar kunci kontak OFF
 - b. Lepas soket IATS
 - c. Putar kunci kontak ON
 - d. Ukur tegangan input IATS pada kabel "Dg (hijau tua)" dapat (+) multi dan kabel "B/Br (hitam/coklat)" dapat (-) multitester.
 - e. Standar pengukuran : 4,5 V 5,5 V
 - f. Hasil pengukuran: 4,93 V

9. Pemeriksaan hubungan kabel rangkaian IATS dengan ECM:

Tabel 4.8 Hubungan Kabel Rangkaian IATS dengan ECM

Y I I I I I I I I I I I I I I I I I I I	T I I I DOM	G. I	Hasil
Kabel di IATS	Kabel di ECM	Standar	pengukuran
Merah	Merah	Berhubungan	Berhubungan
Hijau tua	Hijau tua	Berhubungan	Berhubungan
Hitam/coklat	Hitam/coklat	Berhubungan	Berhubungan

10. Pemeriksaan Tahanan IATS:

Tabel 4.9 Tahanan IATS

Warna kabel di	Cubu	Standar	Hasil
IATS	Suhu	Standar	pengukuran
Hijau tua (+) – hitam/coklat (-)	20 °C	± 2,64 KΩ	2 ΚΩ

Kesimpulan : dari hasil pengukuran dan pemeriksaan komponen IATS, IATS masih bagus dan hasil pengukuran masih mendekati standar, jika komponen ini rusak harus mengganti *Throttel Body*

11. Hasil Pemeriksaan ISC (Idle Speed Control):

a. Mengukur tahanan ISC:

Tabel 4.10 Tahanan ISC

Terminal	Standar	Hasil pengukuran
A – B	$\pm20~\Omega$	20,7 Ω
C – D	± 20 Ω	20,7 Ω

12. Pemeriksaan Hubungan Kabel Rangkaian ISC Dengan ECM:

Tabel 4.11 Hubungan Kabel Rangkaian ISC Dengan ECM

Kabel di ISC	Kabel di ECM	Standar	Hasil pengukuran
Hitam/hijau	Hitam/hijau	Berhubungan	Berhubungan
Hitam/hijau terang	Hitam/hijau terang	Berhubungan	Berhubungan
Biru terang	Biru terang	Berhubungan	Berhubungan
Kuning/merah	Kuning/merah	Berhubungan	Berhubungan

Kesimpulan : dari hasil pemeriksaan dan pengukuran komponen ISC, ISC masih bagus dan layak pakai karena hasil pengukuran menunjukan komponen ISC masih sesuai standar, dan jika terjadi kerusakan pada komponen ISC, harus melakukan pergantian *Throttel Body*.

4.1.3 Hasil Dari Analisis Sistem Pengapian

- 1. Hasil dari pemeriksaan tahanan CKPS (Crankshaft Position Sensor):
 - a. Melepas soket CKPS
 - b. Menghubungkan kabel "Bl/Y (biru/kuning)" dapat (+) multitester dan "B (hitam)" dapat (-) multitester.
 - c. Standar tahanan : 180 Ω 230 Ω pada suhu 20 °C
 - d. Hasil pengukuran : 240 Ω
- 2. Hasil dari pemeriksaan tegangan CKP sensor:
 - a. Melepas soket CKPS
 - b. Kabel warna "Bl/Y (biru/kuning)" dapat (+) multitester dan kabel "B (hitam)" dapat (-) multitester.
 - c. Putar magnet dengan motor stater
 - d. Standar pengukuran: 2 V
 - e. Hasil pengukuran: 1,8 V
- 3. Hasil dari pemeriksaan hubungan kabel rangkaian CKP sensor Dengan ECM:

Tabel 4.12 Hubungan Kabel Rangkaian CKP sensor Dengan ECM

No	Warna kabel	Standar	Hasil pengukuran
1	Kuning terang di CKP	Berhubungan	Berhubungan
	dengan kuning terang di ECM		
2	Hitam di CKP dengan	Berhubungan	Berhubungan
	hitam di ECM		

Kesimpulan: Dari hasil pemeriksaan sensor CKP, sensor ini masih bagus dan masih layak untuk digunakan, karena hasil pengukuran menunjukan sensor CKP masih mendekati standar.

- 4. Hasil dari pemeriksaan tegangan input ET sensor (Engine Temperature Sensor) :
 - a. Putar kunci kontak OFF
 - b. Melepas soket sensor ET
 - c. Putar kunci kontak ON
 - d. Kabel warna "O/B (Oranye/hitam)" dapat (+) multi dan kabel "B/Br (hitam/coklat)" dapat (-) multi
 - e. Standar pengukuran : 4,5 V 5,5 V
 - f. Hasil pengukuran: 4,93 V

- 5. Hasil dari pemeriksaan tahanan sensor ET
 - a. Melepas soket pada ET sensor
 - b. Melepas sensor ET dari tempatnya
 - c. Siapkan pemanas air, termometer, kabel penghubung, dan multitester
 - d. Mengukur tahanan sensor seperti gambar berikut :

Gambar 4.3 Pemeriksaan Sensor ET

"Menurut gambar 4.3 : pemeriksaan pada sensor ETS dilakukan menggunakan multitester, kabel jumper, termometer, dan pemanas air".

Tabel 4.13 Tahanan Sensor ET

No	Suhu	Standar pengukuran	Hasil pengukuran
1	20 °C	Kira – kira 13 KΩ	10,4 ΚΩ
2	40 °C	Kira – kira 6,2 KΩ	6 ΚΩ
3	80 °C	Kira – kira 1,7 KΩ	1,58 ΚΩ

6. Hasil pemeriksaan hubungan kabel rangkaian sensor ET Dengan ECM :

Tabel 4.14 Hubungan Kabel Rangkaian Sensor ET

No	Warna kabel	Standar	Hasil pengukuran
1	Oranye/hitam di ET dengan oranye/hitam di ECM	Berhubungan	Berhubungan
2	Oranye/hitam di ET dengan oranye/hitam di ECM	Berhubungan	Berhubungan

Kesimpulan : dari hasil pemeriksaan dan pengukuran menunjukan sensor ET (*Engine Temperatur Sensor*) masih bagus.

7. Hasil dari pemeriksaan hubungan kabel rangkaian sensor TO (

Tip Over Sensor) dengan ECM:

Tabel 4.15 Hubungan Kabel Sensor TO dengan ECM

No	Warna Kabel	Standar	Hasil Pengukuran
1	Merah di TO dengan	D 1 1	D 1 1
1	Merah di ECM	Berhubungan	Berhubungan
	Biru/putih di TO		
2	dengan Biru/putih di	Berhubungan	Berhubungan
	ECM		

Berhubungan

- 8. Hasil dari pemeriksaan tahanan sensor TO:
 - a. Melepas soket kabel sensor TO
 - b. Mengukur tahanan pada terminal A dan B (ujung dengan ujung soket)
 - c. Standar pengukuran : 19,1 Ω 19,7 Ω
 - d. Hasil pengukuran : 19,3 Ω

Kesimpulan : dari hasil pengukuran dan analisa pada sensor TO menunjukan bahwa sensor TO masih bagus dan layak pakai karena hasil pengukuran masih masuk dalam standar

9. Hasil dari pemeriksaan hubungan kabel O2 sensor dengan ECM:

Tabel 4.16 Hubungan Kabel O2 sensor dengan ECM

No	Warna kabel	Standar	Hasil pengukuran
1	Putih/oranye di O2 dengan putih/oranye di ECM	Berhubungan	Berhubungan

- 10. Hasil dari pemeriksaan tegangan output sensor O2
 - a. Menghidupkan mesin dan panaskan dengan waktu yang cukup
 - b. Melepas soket sensor O2
 - c. Mengukur tegangan antara kabel "Bl (biru)" dengan massa body
 - d. Standar pengukuran: 0,3 V 1,2 V
 - e. Hasil pengukuran: 0,396 V

Kesimpulan :sensor masih bagus dan layak digunakan karena hasil pengukuran menunjukan bahwa komponen sensor masih masuk dalam kondisi standar.

- 11. Hasil dari pemeriksaan tegangan input ECM (*Electronic Control Module*)
 - a. Melepas konektor dari ECM
 - b. Memutar kunci kontak ON
 - Mengukur tegangan pada konektor ECM pada sisi kabel dengan massa
 - d. Menghubungkan "Or (oranye)" dapat (+) multi dan "Bl/W (biru/putih)" dapat (-) multi.
 - e. Standar pengukuran: 12 V
 - f. Hasil pengukuran: 12,04 V

Kesimpulan : dari hasil pemeriksaan dan pengukuran ECM masih bagus dan masih berfungsi dengan baik.

12. Hasil dari pengecekan hubungan kabel rangkaian sistem pengapian :

Tabel 4. 17 Hubungan Kabel Rangkaian Sistem Pengapian

		Warna		Hasil
No	Nama komponen	kabel	Standar	pengukuran
1	Baterai – sekering	Merah	Berhubungan	Berhubungan
2	Sekering - kunci kontak	Merah	Berhubungan	Berhubungan
3	Kunci kontak - ECM	Oranye	Berhubungan	Berhubungan
4	Kunci kontak - koil	Oranye	Berhubungan	Berhubungan
5	Koil - ECM	Putih/biru	Berhubungan	Berhubungan
6	ECM - massa	Hitam/putih	Berhubungan	Berhubungan
7	CKP 1 – ECM	Biru/kuning	Berhubungan	Berhubungan
8	CKP 2 – ECM	Hitam/coklat	Berhubungan	Berhubungan

13. Hasil dari pengukuran komponen sistem pengapian

Tabel 4.18 Pengukuran Komponen Sistem Pengapian

No	Nama komponen	Standar	Hasil
			pengukuran
1	Baterai	12 V	13 V
2	Sekering 10 A	Berhubungan	Berhubungan
3	Kunci kontak	Berhubungan saat	Berhubungan

		posisi "ON"	
4	Tahanan CKP	180 – 280 Ω (20°C)	240 Ω
5	Tegangan CKP	2 V	1,8 V
6	Primer koil	2,1 – 3,1 Ω	2,5 Ω
7	Sekunder koil	7 - 15 KΩ tutup busi	15 ΚΩ

Kesimpulan: dari hasil pemeriksaan hubungan kabel rangkaian sistem pengapian dan pengukuran komponen sistem pengapian menunjukan bahwa sistem pengapian sepeda motor Suzuki Nex Fi masih bagus dan masih berfungsi dengan baik karena hasil pengkuran masih mendekati standar.

4.1.4 Hasil Analisa *Troubleshooting* Sistem Kontrol Elektronik pada Sepeda Motor Suzuki Nex Fi

Tabel berikut menguraikan masalah sistem kontrol elektronik pada sepeda motor Suzuki Nex FI untuk diketahui penyebab dan cara mengatasinya

Tabel 4.19 Troubleshooting Pada Sepeda Motor Suzuki Nex FI

Permasalahan	Gejala dan kemungkinan penyebab	Perbaikan
Engine tidak dapat dihidupkan	Tidak ada percikan api pada busi : 1. Busi kotor 2. Busi rusak 3. Ignition coil rusak 4. CKP sensor rusak 5. ECM rusak	-bersihkan -ganti -ganti -ganti -ganti
	Tidak ada bahan bakar yang mencapai injektor: 1. Fuel pump tersumbat atau rusak 2. Fuel hose atau fuel filter tersumbat 3. Lubang fuel tank tersumbat	-bersihkan atau ganti
Mesin sering mati	 Busi kotor Fuel hose tersumbat CKP sensor rusak 	-bersihkan -bersihkan -ganti
Baterai tidak terisi Tidak ada	 Terjadi hubungan kabel pada generator Regulator bocor atau terjadi hubungan pendek Ignition coil rusak 	-ganti -ganti
percikan api atau api lemah	 Busi rusak CKP sensor rusak Generator rusak 	-ganti -ganti -ganti
Putaran mesin tidak sempurna saat kecepatan tinggi	 ignition coil rusak kerusakan CKP sensor selang bahan bakar tersumbat, menyebabkan suplai bahan bakar tidak cukup 	-ganti -ganti -bersihkan dan sempurnakan
Engine idle tidak sempurna	 ignition coil rusak CKP sensor rusak Generator rusak 	-ganti -ganti -ganti

4.	Air cleaner tersumbat	-bersihkan
5.	Busi gap terlalu lebar	-ganti
6.	ISC rusak atau kotor	-bersihkan atau
		ganti

4.1.5 Hasil Pemeriksaan DTC Menggunakan Alat Khusus atau (Kabel *jumper*)

Tabel berikut menguraikan kerusakan fungsi dan gejala sistem kontrol elektronik pada sepeda motor Suzuki Nex FI.

Tabel 4.20 Indeks Kode DTC.

Kedipan MIL	Kerusakan fungsi	Gejala
12	Sensor CKP tidak berfungsi: • Konektornya kendur atau konektornya sudah tidak bagus • Sensor CKP atau rangkaianya tidak berfungsi	Mesin tidak bisa hidup
13	Sensor IAPS (Intake Air Pressure Sensor) tidak berfungsi : • Konektornya kendur atau konektornya sudah tidak bagus • Sensor IAPS atau rangkaianya tidak berfungsi	Mesin masih bisa hidup tapi lampu MIL hidup terus dan akselerasi mesin kurang bagus
14	Sensor TPS (Throttle Position Sensor)tidak berfungsi:	Akselerasi mesin kurang bagus

	 Konektornya kendur atau konektornya sudah tidak bagus Sensor TPS atau rangkainya sudah rusak 	
15	SensorETS (Engine Temperatur Sensor)tidak berfungsi : • Konektornya kendur atau konektornya sudah tidak bagus • Sensor ETS atau rangkainya sudah rusak	 Mesin sulit dihidupkan saat temperature rendah ISC (Idle Speed Control) tidak bisa bekerja
21	Sensor IATS (Intake Air Temperature Sensor)tidak berfungsi: • Konektornya kendur atau konektornya sudah tidak bagus • Sensor IATS atau rangkainya sudah rusak	Mesin masih bisa hidup tapi lampu MIL hidup terus dan akselerasi mesin kurang bagus
23	Sensor TO (Tip Over Sensor)tidak berfungsi : • Konektornya kendur atau konektornya sudah tidak bagus • Sensor TO atau rangkainya sudah rusak	Mesin tidak bisa hidup
24	Ignition coil tidak berfungsi:	 Mesin tidak bisa hidup Tidak dapat memercikan bunga api

32	Injektor tidak berfunsgi: Injektor atau rangkaianya sudah rusak Konektornya kendur atau konektornya sudah tidak bagus	 Mesin tidak bisa hidup Pompa bahan bakar tidak bisa berfungsi
40	ISC (Idle Speed Control) tidak berfungsi: ISC atau rangkaianya sudah rusak Konektornya kendur atau konektornya sudah tidak bagus	 Putaran idle tidak stabil atau naik turun Motor mudah mati saat mesin dingin
41	Pompa bahan bakar atau (Fuel pump) tidak berfungsi: Pompa bahan bakar atau rangkaianya sudah rusak Konektornya kendur atau konektornya sudah tidak bagus	Mesin tidak bisa hidup

4.2 Pembahasan

Didalam engine EFI terdapat salah satu mode yang bagus yaitu mode *Fail Safe*. Definisi dari mode ini adalah sebuah mode apabila terjadi gangguan atau kerusakan yang terjadi pada sensor sensor yang sudah ditetapkan pada mode *Fail Safe*, seperti sensor : (IAPS, TPS, IATS, ETS, O2, dan ISC) maka ECU akan mengaktifkan mode *Fail Safe* dan lampu MIL akan aktif, tetapi mesin EFI akan tetap hidup dengan menggunakan data nilai standar yang diberikan pada ECU dan

motor masih dapat berjalan, tetapi pengoperasian mesin menjadi tidak sempurna. Intinya mode ini hanya memberikan bantuan darurat saja halam hal ini. Jika motor tetap dibiarkan dalam mode seperti ini maka mesin motor akan rusak parah, jadi motor tetap harus diperbaiki secepatnya agar pengoperasian pada mesin EFI bisa berjalan dengan baik.

Tabel 4.21 Fail Safe

ITEM	MODE FAIL SAFE	STARTING ABILITY	RUNNING ABILITY
IAPS	Intake air pressure dibuat	YES	YES
	tetap ke xxx.x kPa		
TPS	Sudut katup bukaan tetap	YES	YES
113	xx° dan ignition timing juga	IES	
	dibuat tetap		
IATS	Nilai intake air temperature	YES	YES
	dibuat tetap ke xx°C		
ETS	Nilai <i>temperature</i> mesin	YES	YES
	dibuat tetap ke xx°C		
0.2	Kompensasi feedback akan	MEG	YES
O2	dicegah. (air/fuel rasio	YES	
	dibuat tetap ke normal.)		
ISC	Pengoperasian ISC akan	YES	YES
	dihentikan		