BAB IV HASIL DAN PEMBAHASAN

4.1. Gambar Alat

Gambar 4.1 menunjukkan modul audiometer yang dibuat oleh penulis.

Gambar 4.1 Modul Audiometer

4.2. Standar Operasional Prosedur Alat

Dalam mengoperasikan alat terdapat langkah-langkah yang harus dilakukan diantaranya adalah sebagai berikut :

- 1. Tekan tombol *On* untuk menyalakan alat.
- 2. Pasang headphone pada pasien.
- 3. Pilih frekuensi dan intensitas suara yang diinginkan.
- 4. Tekan tombol *start* untuk memulai pengujian.
- Jika pasien mendengar maka lakukan kembali pemilihan frekuensi dan intensitas suara untuk melakukan pengujian pada frekuensi dan intensitas suara yang lain.
- 6. Tekan tombol reset untuk mengulangi pengujian.
- 7. Setelah selesai melakukan pengujian tekan tombol Off.
- 8. Rapihkan alat setelah selesai digunakan.

9. Simpan alat ditempat yang bersih dan sejuk.

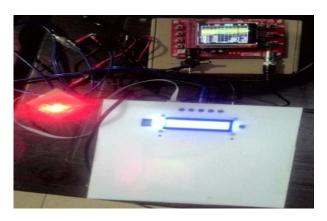
4.3. Pengujian Alat dan Hasil Pengujian

4.3.1. Spesifikasi Alat Pembanding

a. Nama : Oscilloscope Digital

b. Merk : DSO 138

c. Tampilan : Digital pada LCD


Gambar 4.2 menunjukan alat pembanding yang digunakan pada saat pengambilan data.

Gambar 4.2 Alat Pembanding

4.3.2. Cara Pengujian Modul

Langkah pertama yang dilakukan sebelum melakukan pengujian adalah dengan menghubungkan alat pembanding dengan modul seperti gambar 4.3 dibawah ini.

Gambar 4.3 Pengujian Modul

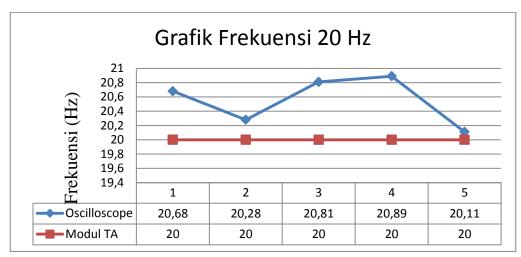
Pengujian dilakukan dengan cara membandingkan keluaran frekuensi pada modul dengan alat pembanding yang akan terlihat pada tampilan LCD. Tahapan pengujian pada modul adalah:

- 1. Pengujian Frekuensi Pada Oscilloscope
- 2. Pengujian Intensitas Suara (dB) Pada Sound Level Meter

3. Pengujian Pada Manusia

Pengujian pada manusia dilakukan setelah selesai melakukan pengujian frekuensi dan intensitas suara (dB) agar nilai frekuensi dan intensitas suara yang dihasilkan pada modul sesuai dengan ambang pendengar seseorang.

4.3.3. Pengujian Frekuensi Pada Oscilloscope


1. Pengujian Frekuensi 20 Hz

Untuk hasil dan analisa percobaan dapat dilihat pada tabel 4.1 dibawah ini.

Tabel 4.1 Hasil Pengujian Frekuensi 20 Hz

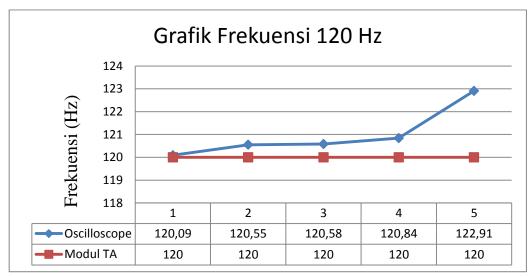
Frekuensi	Percobaan	Hasil Percobaan		Selisih
		Oscilloscope	Modul TA	
	1	20,68 Hz	20 Hz	0,68 Hz
	2	20,28 Hz	20 Hz	0,28 Hz
20 Hz	3	20,81 Hz	20 Hz	0,81 Hz
	4	20,89 Hz	20 Hz	0,89 Hz
	5	20,11 Hz	20 Hz	0,11 Hz
Rata-rata		20,554 Hz	20 Hz	0,554 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 0,89 Hz pada percobaan ke 4 dan selisih terendah yaitu 0,11 Hz pada percobaan ke 5. Hasil rata-rata yang didapat alat pembanding adalah 20,554 Hz. Grafik dari hasil pengujian frekuensi 20 Hz dapat dilihat pada gambar 4.4.

Gambar 4.4 Grafik Pengujian Frekuensi 20 Hz

Dari grafik diatas terlihat bahwa selisih frekuensi antara *oscilloscope* dan modul TA. Selisih tertinggi yaitu 0,89 Hz pada percobaan ke 4 dan selisih terendah yaitu 0,11 Hz pada percobaan ke 5. Selisih antara nilai *setting* modul TA dan nilai aktual/keluaran *oscilloscope* dimungkinakan terjadi karena ada nilai toleransi dari komponen yang digunakan.

2. Pengujian Frekuensi 120 Hz


Untuk hasil dan analisa percobaan dapat dilihat pada tabel 4.2 dibawah ini.

Tabel 4.2 Hasil Pengujian Frekuensi 120 Hz

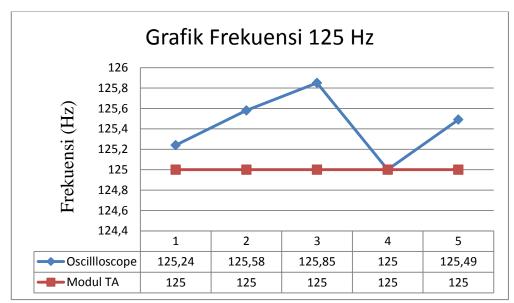
Frekuensi	Percobaan	Hasil Percobaan		Selisih
		Oscilloscope	Modul TA	Schsin
	1	120,09 Hz	120 Hz	0,09 Hz
	2	120,55 Hz	120 Hz	0,55 Hz
120 Hz	3	120,58 Hz	120 Hz	0,58 Hz
	4	120,84 Hz	120 Hz	0,84 Hz
	5	122,91 Hz	120 Hz	2,91 Hz
Rata	-rata	120,994 Hz	120 Hz	0,994 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 2,91 Hz pada percobaan ke 5 dan selisih terendah yaitu 0,09 Hz pada percobaan ke 1.

Hasil rata-rata yang didapat alat pembanding adalah 120,994 Hz. Grafik dari hasil pengujian frekuensi 120 Hz dapat dilihat pada gambar 4.5.

Gambar 4.5 Grafik Pengujian Frekuensi 120 Hz

Dari grafik diatas terlihat bahwa selisih frekuensi antara *oscilloscope* dan modul TA. Selisih tertinggi yaitu 2,91 Hz pada percobaan ke 5 dan selisih terendah yaitu 0,09 Hz pada percobaan ke 1. Selisih antara nilai *setting* modul TA dan nilai aktual/keluaran *oscilloscope* dimungkinakan terjadi karena ada nilai toleransi dari komponen yang digunakan.


3. Pengujian Frekuensi 125 Hz

Untuk hasil dan analisa percobaan dapat dilihat pada tabel 4.3 dibawah ini.

Tabel 4.3 Hasil Pengujian Frekuensi 125 Hz

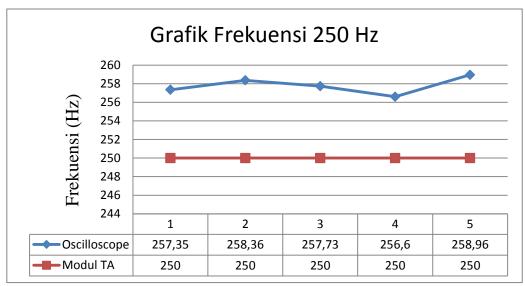
Frekuensi	Percobaan	Hasil Percobaan		
		Oscilloscope	Modul TA	Selisih
	1	125,24 Hz	125 Hz	0,24 Hz
125 Hz	2	125,58 Hz	125 Hz	0,58 Hz
	3	125,85 Hz	125 Hz	0,85 Hz
	4	125 Hz	125 Hz	0 Hz
	5	125,49 Hz	125 Hz	0,49 Hz
Rata	-rata	125,432 Hz	125 Hz	0,432 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 0,85 Hz pada percobaan ke 3 dan selisih terendah yaitu 0 Hz pada percobaan ke 4. Hasil rata-rata yang didapat alat pembanding adalah 125,432 Hz. Grafik dari hasil pengujian frekuensi 125 Hz dapat dilihat pada gambar 4.6.

Gambar 4.6 Grafik Pengujian Frekuensi 125 Hz

Dari grafik diatas terlihat bahwa selisih frekuensi antara *oscilloscope* dan modul TA. Selisih tertinggi yaitu 0,85 Hz pada percobaan ke 3 dan selisih terendah yaitu 0 Hz pada percobaan ke 4. Selisih antara nilai *setting* modul TA dan nilai aktual/keluaran *oscilloscope* dimungkinakan terjadi karena ada nilai toleransi dari komponen yang digunakan.

4. Pengujian Frekuensi 250 Hz


Untuk hasil dan analisa percobaan dapat dilihat pada tabel 4.4 dibawah ini.

Tabel 4.4 Hasil Pengujian Frekuensi 250 Hz

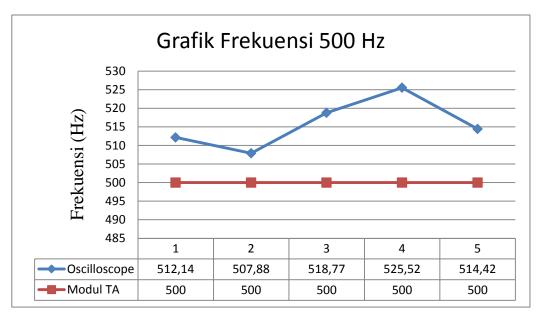
<u>U J</u>				
Frekuensi	Percobaan	Hasil Percobaan		Selisih
Tiendensi	reresouum	Oscilloscope	Modul TA	Sensin
	1	257,35 Hz	250 Hz	7,35 Hz
250 Hz	2	258,36 Hz	250 Hz	8,36 Hz
	3	257,73 Hz	250 Hz	7,73 Hz

	4	256,6 Hz	250 Hz	6,6 Hz
	5	258,96 Hz	250 Hz	8,96 Hz
Rata	-rata	257,8 Hz	250 Hz	7,8 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 8,96 Hz pada percobaan ke 5 dan selisih terendah yaitu 6,6 Hz pada percobaan ke 4. Hasil rata-rata yang didapat alat pembanding adalah 257,8 Hz. Grafik dari hasil pengujian frekuensi 250 Hz dapat dilihat pada gambar 4.7.

Gambar 4.7 Grafik Pengujian Frekuensi 250 Hz

Dari grafik diatas terlihat bahwa selisih frekuensi antara *oscilloscope* dan modul TA. Selisih tertinggi yaitu 8,96 Hz pada percobaan ke 5 dan selisih terendah yaitu 6,6 Hz pada percobaan ke 4. Selisih antara nilai *setting* modul TA dan nilai aktual/keluaran *oscilloscope* dimungkinakan terjadi karena ada nilai toleransi dari komponen yang digunakan.


5. Pengujian Frekuensi 500 Hz

Untuk hasil dan analisa percobaan dapat dilihat pada tabel 4.5 dibawah ini.

Tabel 4.5 Hasil Pengujian Frekuensi 500 Hz

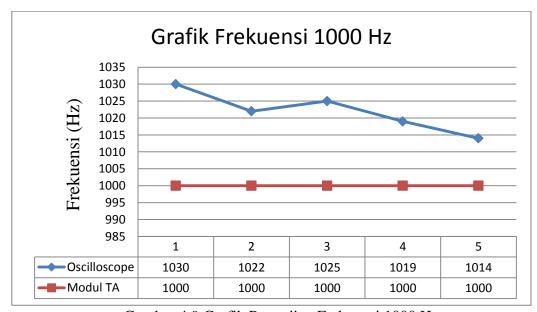
Frekuensi	Percobaan	Hasil Percobaan		Selisih
		Oscilloscope	Modul TA	
	1	512,14 Hz	500 Hz	21,14 Hz
	2	507,88 Hz	500 Hz	7,88 Hz
500 Hz	3	518,77 Hz	500 Hz	18,77 Hz
	4	525,52 Hz	500 Hz	25,52 Hz
	5	514,42 Hz	500 Hz	14,42 Hz
Rata	ı-rata	517,546 Hz	500 Hz	17,546 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 25,52 Hz pada percobaan ke 4 dan selisih terendah yaitu 7,88 Hz pada percobaan ke 2. Hasil rata-rata yang didapat alat pembanding adalah 517,546 Hz. Grafik dari hasil pengujian frekuensi 500 Hz dapat dilihat pada gambar 4.8.

Gambar 4.8 Grafik Pengujian Frekuensi 500 Hz

Dari grafik diatas terlihat bahwa selisih frekuensi antara *oscilloscope* dan modul TA. Selisih tertinggi yaitu 25,52 Hz pada percobaan ke 4 dan selisih terendah yaitu 7,88 Hz pada percobaan ke 2. Selisih antara nilai *setting* modul TA

dan nilai aktual/keluaran *oscilloscope* dimungkinakan terjadi karena ada nilai toleransi dari komponen yang digunakan.


6. Pengujian Frekuensi 1000 Hz

Untuk hasil dan analisa percobaan dapat dilihat pada tabel 4.6 dibawah ini.

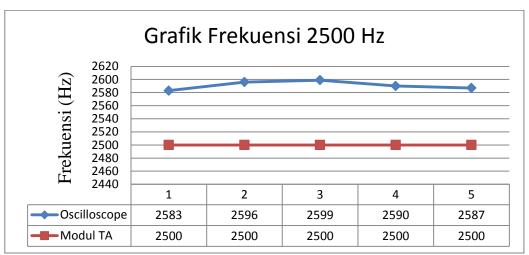
Tabel 4.6 Hasil Pengujian Frekuensi 1000 Hz

Frekuensi	Percobaan	Hasil Percobaan		Selisih
		Oscilloscope	Modul TA	
	1	1030 Hz	1000 Hz	30 Hz
	2	1022 Hz	1000 Hz	22 Hz
1000 Hz	3	1025 Hz	1000 Hz	25 Hz
	4	1019 Hz	1000 Hz	19 Hz
	5	1014 Hz	1000 Hz	14 Hz
Rata	ı-rata	1022 Hz	1000 Hz	22 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 30 Hz pada percobaan ke 1 dan selisih terendah yaitu 14 Hz pada percobaan ke 5. Hasil rata-rata yang didapat alat pembanding adalah 1022 Hz. Grafik dari hasil pengujian frekuensi 1000 Hz dapat dilihat pada gambar 4.9.

Gambar 4.9 Grafik Pengujian Frekuensi 1000 Hz

Dari grafik diatas terlihat bahwa selisih frekuensi antara *oscilloscope* dan modul TA. Selisih tertinggi yaitu 30 Hz pada percobaan ke 1 dan selisih terendah yaitu 14 Hz pada percobaan ke 5. Selisih antara nilai *setting* modul TA dan nilai aktual/keluaran *oscilloscope* dimungkinakan terjadi karena ada nilai toleransi dari komponen yang digunakan.


7. Pengujian Frekuensi 2500 Hz

Untuk hasil dan analisa percobaan dapat dilihat pada tabel 4.7 dibawah ini.

Tabel 4.7 Hasil Pengujian Frekuensi 2500 Hz

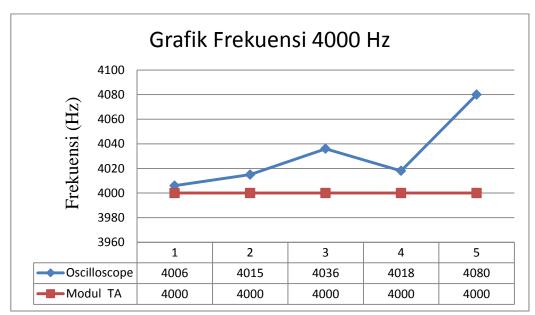
Frekuensi	Percobaan	Hasil Percobaan		Selisih
110110701101	1 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Oscilloscope	Modul TA	~ • • • • • • • • • • • • • • • • • • •
	1	2583 Hz	2500 Hz	83 Hz
	2	2596 Hz	2500 Hz	96 Hz
2500 Hz	3	2599 Hz	2500 Hz	99 Hz
	4	2590 Hz	2500 Hz	90 Hz
	5	2587 Hz	2500 Hz	87 Hz
Rata	ı-rata	2591 Hz	2500 Hz	91 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 99 Hz pada percobaan ke 3 dan selisih terendah yaitu 83 Hz pada percobaan ke 1. Hasil rata-rata yang didapat alat pembanding adalah 2591 Hz. Grafik dari hasil pengujian frekuensi 2500 Hz dapat dilihat pada gambar 4.10.

Gambar 4.10 Grafik Pengujian Frekuensi 2500 Hz

Dari grafik diatas terlihat bahwa selisih frekuensi antara *oscilloscope* dan modul TA. Selisih tertinggi yaitu 99 Hz pada percobaan ke 3 dan selisih terendah yaitu 83 Hz pada percobaan ke 1. Selisih antara nilai *setting* modul TA dan nilai aktual/keluaran *oscilloscope* dimungkinakan terjadi karena ada nilai toleransi dari komponen yang digunakan.

8. Pengujian Frekuensi 4000 Hz


Untuk hasil dan analisa percobaan dapat dilihat pada tabel 4.8 dibawah ini.

Tabel 4.8 Hasil Pengujian Frekuensi 4000 Hz

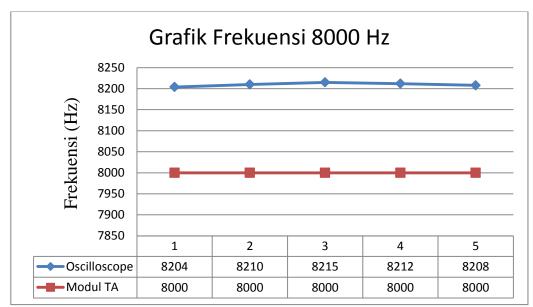
Frekuensi	Percobaan	Hasil Percobaan		Selisih
110110/01101	1 010 00 4441	Oscilloscope	Modul TA	~ • • • • • • • • • • • • • • • • • • •
	1	4006 Hz	4000 Hz	6 Hz
	2	4015 Hz	4000 Hz	15 Hz
4000 Hz	3	4036 Hz	4000 Hz	36 Hz
	4	4018 Hz	4000 Hz	18 Hz
	5	4080 Hz	4000 Hz	80 Hz
Rata	a-rata	4031 Hz	4000 Hz	31 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 80 Hz pada percobaan ke 5 dan selisih terendah yaitu 6 Hz pada percobaan ke 1. Hasil

rata-rata yang didapat alat pembanding adalah 4031 Hz. Grafik dari hasil pengujian frekuensi 4000 Hz dapat dilihat pada gambar 4.11.

Gambar 4.11 Grafik Pengujian Frekuensi 4000 Hz

Dari grafik diatas terlihat bahwa selisih frekuensi antara *oscilloscope* dan modul TA. Selisih tertinggi yaitu 80 Hz pada percobaan ke 5 dan selisih terendah yaitu 6 Hz pada percobaan ke 1. Selisih antara nilai *setting* modul TA dan nilai aktual/keluaran *oscilloscope* dimungkinakan terjadi karena ada nilai toleransi dari komponen yang digunakan.


9. Pengujian Frekuensi 8000 Hz

Untuk hasil dan analisa percobaan dapat dilihat pada tabel 4.9 dibawah ini.

Tabel 4.9 Hasil Pengujian Frekuensi 8000 Hz

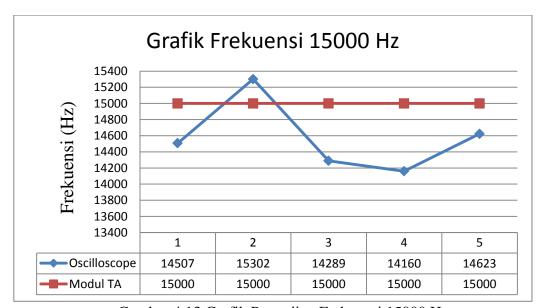
Frekuensi	Percobaan	Hasil Percobaan		Selisih
		Oscilloscope	Modul TA	
	1	8204 Hz	8000 Hz	204 Hz
	2	8210 Hz	8000 Hz	210 Hz
8000 Hz	3	8215 Hz	8000 Hz	215 Hz
	4	8212 Hz	8000 Hz	212 Hz
	5	8208 Hz	8000 Hz	208 Hz
Rata	a-rata	8209,8 Hz	8000 Hz	210 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 215 Hz pada percobaan ke 3 dan selisih terendah yaitu 204 Hz pada percobaan ke 1. Hasil rata-rata yang didapat alat pembanding adalah 8209,8 Hz. Grafik dari hasil pengujian frekuensi 8000 Hz dapat dilihat pada gambar 4.12.

Gambar 4.12 Grafik Pengujian Frekuensi 8000 Hz

Dari grafik diatas terlihat bahwa selisih frekuensi antara *oscilloscope* dan modul TA. Selisih tertinggi yaitu 215 Hz pada percobaan ke 3 dan selisih terendah yaitu 204 Hz pada percobaan ke 1. Selisih antara nilai *setting* modul TA dan nilai aktual/keluaran *oscilloscope* dimungkinakan terjadi karena ada nilai toleransi dari komponen yang digunakan.

10. Pengujian Frekuensi 15000 Hz


Untuk hasil dan analisa percobaan dapat dilihat pada tabel 4.10 dibawah ini.

Tabel 4.10 Hasil Pengujian Frekuensi 15000 Hz

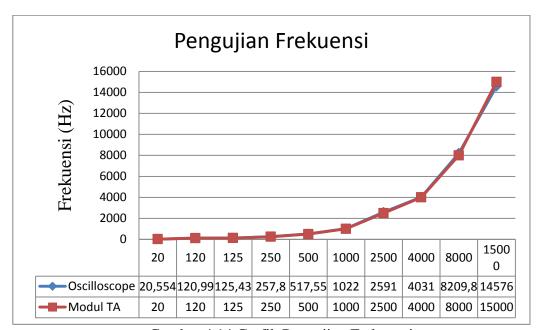
Frekuensi	Percobaan	Hasil Percobaan		Selisih
		Oscilloscope	Modul TA	
15000 Hz	1	14507 Hz	15000 Hz	493 Hz
13000 HZ	2	15302 Hz	15000 Hz	302 Hz

	3	14289 Hz	15000 Hz	711 Hz
	4	14160 Hz	15000 Hz	840 Hz
	5	14623 Hz	15000 Hz	377 Hz
Rata	a-rata	14576,2 Hz	15000 Hz	545 Hz

Pengujian dilakukan sebanyak 5 kali dengan selisih tertinggi yaitu 840 Hz pada percobaan ke 4 dan selisih terendah yaitu 302 Hz pada percobaan ke 2. Hasil rata-rata yang didapat alat pembanding adalah 14576,2 Hz. Grafik dari hasil pengujian frekuensi 15000 Hz dapat dilihat pada gambar 4.13.

Gambar 4.13 Grafik Pengujian Frekuensi 15000 Hz

Dari grafik diatas terlihat bahwa selisih frekuensi antara *oscilloscope* dan modul TA. Selisih tertinggi yaitu 840 Hz pada percobaan ke 4 dan selisih terendah yaitu 302 Hz pada percobaan ke 2. Selisih antara nilai *setting* modul TA dan nilai aktual/keluaran *oscilloscope* dimungkinakan terjadi karena ada nilai toleransi dari komponen yang digunakan.


11. Kesimpulan Pengujian Frekuensi

Untuk kesimpulan dari pengujian frekuensi dapat dilihat pada tabel 4.11 dibawah ini.

Tabel 4.11 Kesimpulan Pengujian Frekuensi

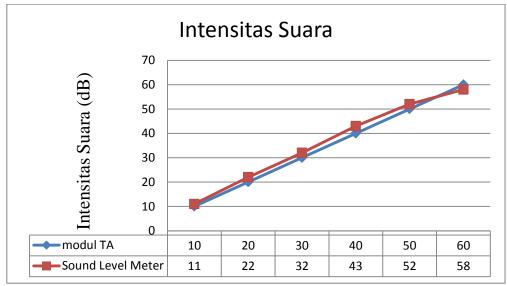
Frekuensi	Hasil Percobaan			
TTERUEIISI	Oscilloscope	Modul TA		
20 Hz	20,554 Hz	20 Hz		
120 Hz	120,994 Hz	120 Hz		
125 Hz	125,432 Hz	125 Hz		
250 Hz	257,8 Hz	250 Hz		
500 Hz	517,546 Hz	500 Hz		
1000 Hz	1022 Hz	1000 Hz		
2500 Hz	2591 Hz	2500 Hz		
4000 Hz	4031 Hz	4000 Hz		
8000 Hz	8209,8 Hz	8000 Hz		
15000 Hz	14576,2 Hz	15000 Hz		

Pada tabel dapat dilihat data hasil pengukuran frekuensi berdasarkan perbandingan antara *oscilloscope* dan modul TA.

Gambar 4.14 Grafik Pengujian Frekuensi

Dari grafik diatas terlihat bahwa selisih frekuensi pada *oscilloscope* dan modul TA cenderung tidak jauh berbeda. Terlihat titik terjauh berada pada

frekuensi 15000 Hz. Selisih frekuensi pada *oscilloscope* dan modul TA yang tidak jauh berbeda, sehingga dapat dikatakan modul TA aman pada manusia karena termasuk di ambang pendengaran manusia.


4.3.4. Pengujian Intensitas Suara Pada Sound Level Meter

Untuk hasil dan analisa hasil percobaan dapat dilihat pada tabel 4.12 dibawah ini.

Tabel 4.12 Hasil Pengujian Intensitas Suara

Modul TA	Sound Level Meter
10 dB	11 dB
20 dB	22 dB
30 dB	32 dB
40 dB	43 dB
50 dB	52 dB
60 dB	58 dB

Hasil pengujian intensitas suara dengan menggunakan aplikasi *smartphone* sound level meter. Pengambilan data diatas untuk menguji nilai setting modul TA dengan nilai aktual/keluaran sound level meter.

Gambar 4.15 Grafik Pengujian Intensitas Suara

Dari grafik diatas terlihat bahwa selisih intensitas suara pada sound level meter dan modul TA cenderung tidak jauh berbeda. Selisih terjauh antara sound level meter dan modul TA hanya sebesar 3 dB pada titik 40 dB. Selisih intensitas suara pada sound level meter dan modul TA adalah untuk mengetahui bahwa modul TA sudah aman atau belum untuk pendengaran manusia. Dari selisih intensitas suara pada sound level meter dan modul TA yang tidak terlalu jauh dapat dikatakan modul TA aman pada manusia karena termasuk di ambang pendengaran manusia.

4.3.5. Pengujian Pada Pasien

Penulis melakukan uji modul pada pasien. Pengujian dilakukan pada 4 orang pasien dengan 1 kali pengambilan data. Pada umumnya titik pemeriksaan pertama kali pada frekuensi 1000 Hz, dengan intensitas suara (dB) awal yaitu 40 dB. Jika pasien tidak mendengar maka akan dinaikkan 20 dB, tetapi jika pasien mendengar maka akan diturunkan 10 dB. Kemudian naik ke frekuensi 2500 Hz sampai ke frekuensi 8000 Hz. Kemudian dari frekuensi 8000 Hz, turun ke frekuensi 500 Hz, turun lagi sampai ke frekuensi 250 Hz.

a. Pengambilan Data Pada Frekuensi 20 Hz

Pengukuran yang dilakukan pada pasien dengan frekuensi 20 Hz dapat dilihat pada tabel 4.13.

Tabel 4. 13 Pengambilan Data Pada Frekuensi 20 Hz

		Intensitas	Pengujian	
Nama	Usia	Suara	Telinga	Telinga
		(dB)	Kanan	Kiri
Yodia	18 tahun	10 dB	$\sqrt{}$	$\sqrt{}$
		20 dB	$\sqrt{}$	$\sqrt{}$
		40 dB	V	\checkmark
		60 dB	$\sqrt{}$	$\sqrt{}$

Yossica	18 tahun	10 dB	$\sqrt{}$	$\sqrt{}$
		20 dB	V	$\sqrt{}$
		40 dB	V	$\sqrt{}$
		60 dB	V	$\sqrt{}$
Gumilang	22 tahun	10 dB	V	$\sqrt{}$
		20 dB	V	$\sqrt{}$
		40 dB	$\sqrt{}$	\checkmark
		60 dB	$\sqrt{}$	$\sqrt{}$
Widya	40 tahun	10 dB	V	$\sqrt{}$
		20 dB	$\sqrt{}$	\checkmark
		40 dB	V	V
		60 dB	$\sqrt{}$	$\sqrt{}$

Dari tabel diatas dapat dilihat pada frekuensi paling rendah 20 Hz keempat pasien bisa mendengarkan suara yang dihasilkan oleh modul. Dapat dikatakan keempat pasien memiliki pendengaran yang normal.

b. Pengambilan Data Pada Frekuensi 4000 Hz

Pengukuran yang dilakukan pada pasien dengan frekuensi 4000 Hz dapat dilihat pada tabel 4.14.

Tabel 4. 14 Pengambilan Data Pada Frekuensi 4000 Hz

		Intensitas	Pengujian	
Nama	Usia	Suara	Telinga	Telinga
		(dB)	Kanan	Kiri
	18 tahun	10 dB	$\sqrt{}$	$\sqrt{}$
Yodia		20 dB	$\sqrt{}$	$\sqrt{}$
Toura		40 dB	$\sqrt{}$	$\sqrt{}$
		60 dB	\checkmark	$\sqrt{}$
	18 tahun	10 dB	\checkmark	$\sqrt{}$
Yossica		20 dB	\checkmark	$\sqrt{}$
1 OSSICa		40 dB	$\sqrt{}$	$\sqrt{}$
		60 dB	\checkmark	$\sqrt{}$
	22 tahun	10 dB	$\sqrt{}$	$\sqrt{}$
Cumilana		20 dB	\checkmark	$\sqrt{}$
Gumilang		40 dB	\checkmark	$\sqrt{}$
		60 dB	\checkmark	$\sqrt{}$
Widya	40 tahun	10 dB	$\sqrt{}$	$\sqrt{}$
		20 dB	$\sqrt{}$	$\sqrt{}$
wiuya		40 dB	$\sqrt{}$	$\sqrt{}$
		60 dB	$\sqrt{}$	$\sqrt{}$

Dari tabel diatas dapat dilihat pada frekuensi 4000 Hz keempat pasien bisa mendengarkan suara yang dihasilkan oleh modul. Dapat dikatakan keempat pasien memiliki pendengaran yang normal.

c. Pengambilan Data Pada Frekuensi 8000 Hz

Pengukuran yang dilakukan pada pasien dengan frekuensi 8000 Hz dapat dilihat pada tabel 4.15.

Tabel 4.15 Pengambilan Data Pada Frekuensi 8000 Hz

		Intensitas	Pengujian	
Nama	Usia	Suara	Telinga	Telinga
		(dB)	Kanan	Kiri
	18 tahun	10 dB	$\sqrt{}$	$\sqrt{}$
Yodia		20 dB	$\sqrt{}$	$\sqrt{}$
Toula		40 dB	$\sqrt{}$	$\sqrt{}$
		60 dB	$\sqrt{}$	$\sqrt{}$
	18 tahun	10 dB	$\sqrt{}$	$\sqrt{}$
Yossica		20 dB	$\sqrt{}$	$\sqrt{}$
1 08810a		40 dB	$\sqrt{}$	$\sqrt{}$
		60 dB	$\sqrt{}$	$\sqrt{}$
	22 tahun	10 dB	$\sqrt{}$	$\sqrt{}$
Gumilang		20 dB	$\sqrt{}$	$\sqrt{}$
		40 dB	$\sqrt{}$	$\sqrt{}$
		60 dB	V	$\sqrt{}$
	40 tahun	10 dB	√	√
Widya		20 dB	√	√
		40 dB	V	V
		60 dB	V	V

Dari tabel diatas dapat dilihat pada frekuensi paling tinggi 8000 Hz keempat pasien bisa mendengarkan suara yang dihasilkan oleh modul. Dapat dikatakan keempat pasien memiliki pendengaran yang normal.

4.4. Uraian Data Hasil Pengujian Frekuensi

Berdasarkan pengambilan data yang telah dilakukan didapatkan uraian data hasil pengukuran yang dapat dilihat pada tabel 4.13 di bawah ini:

Tabel 4.16 Uraian Data Hasil Pengujian Frekuensi

Danguijan	Frekuensi	Hasil Analisa Data			
Pengujian		Rata-rata	Simpangan	Error	
1	20 Hz	20	0,554	3%	
2	120 Hz	120	0,994	1%	
3	125 Hz	125	0,432	0%	
4	250 Hz	250	7,8	3%	
5	500 Hz	500	17,546	3%	
6	1000 Hz	1000	22	2%	
7	2500 Hz	2500	91	4%	
8	4000 Hz	4000	31	1%	
9	8000 Hz	8000	209,8	3%	
10	15000 Hz	15000	423,8	3%	

Pada tabel dapat dilihat uraian data hasil pengukuran frekuensi berdasarkan hasil dari rata-rata, simpangan dan *error*. Berdasarkan tabel, simpangan terjauh pada frekuensi 500 Hz yaitu 17,546 Hz. Nilai *error* frekuensi tertinggi berada pada frekuensi 2500 Hz yaitu 4%. Banyak faktor yang mempengaruhi hasil dari data pengukuran, seperti tegangan yang tidak stabil yang menyebabkan nilai pengukuran naik turun dan nilai toleransi komponen yang digunakan.