BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

4.1 Asumsi Dasar

4.1.1 Demografi Provinsi Jawa Barat

Wilayah administrasi Provinsi Jawa Barat terdiri dari 17 kabupaten dan 9 kota, berdasarkan peraturan Menteri Dalan Negeri no. 6 Tahun 2008 luas daratan masing-masing kabupaten/kota, yaitu :

Tabel 4.1 Luas Wilayah Kota/Kabupaten di Jawa Barat

No.	Nama Kota/Kabupaten	Luas Wilayah
1	Bogor	2997,13
2	Sukabumi	4160,75
3	Cianjur	3594,65
4	Bandung	1756,65
5	Garut	3094,4
6	Tasikmalaya	2702,85
7	Ciamis	2740,76
8	Kuningan	1189,6
9	Cirebon	1071,05
10	Majalengka	1343,93
11	Sumedang	1560,49
12	Indramayu	2092,1
13	Subang	2164,48
14	Purwakarta	989,89
15	Karawang	1914,16
16	Bekasi	1269,51
17	Bandung Barat	1335,6
18	Kota Bogor	111,73
19	Kota Sukabumi	48,96
20	Kota Bandung	168,23
21	Kota Cirebon	40,16
22	Kota Bekasi	213,58
23	Kota Depok	199,44
24	Kota Cimahi	41,2
25	Kota Tasikmalaya	184,38
26	Kota Banjar	130,86

Provinsi Jawa Barat secara umum merupakan dataran tinggi dengan ketinggian 0 – 1.500 meter di atas permukaan laut, serta memiliki gunung mencapai 3.078 meter di atas permukaan laut. Secara astronomis Provinsi Jawa Barat Bujur 104 ° 48 'BT s.d 108 ° 48 'BT Lintang 5 ° 50 'LS s.d 7 ° 50 'LS. Batas wilayah Provinsi Jawa Barat yaitu Laut Jawa dan Provinsi DKI Jakarta dibagian Utara, Samudera Hindia dibagian Selatan, Provinsi Jawa Tengah dibagian Timur, Provinsi Jawa Barat dibagian Barat. Memiliki luas wilayah 35.377,76 Km².

Gambar 4.1 Peta Provinsi Jawa Barat

Sumber: http://www.jabarprov.go.id

4.1.2 Kependudukan

Penduduk Jawa Barat berdasarkan proyeksi penduduk pada tahun 2015 sebanyak 49.709,60 jiwa yang terdiri atas 23.681 jiwa penduduk laki-laki dan 23.028,60 jiwa penduduk perempuan. Dibandingkan dengan proyeksi jumlah penduduk pada tahun 2014, penduduk Jawa Barat mengalami pertumbuhan yang

sangat jauh yaitu 46,03 juta jiwa jadi mengalami pertumbuhan sebesar 3.709,57 jiwa.

Kepadatan penduduk di Provinsi Jawa Barat tahun 2015 memiliki kepadatan penduduk yang sangat tinggi terutama 15 kota/kabupaten memiliki tingkat kepadatan penduduk lebih dari 1.000 jiwa/Km². Bahkan Jawa Barat memiliki 4 kabupatan/kota dengan tingkat kepadatan di atas 10.000 jiwa/Km², yaitu Kota Bandung, Kota Cimahi, Kota Bekasi, dan Kota Depok.

Tabel 4.2 Jumlah Penduduk Provinsi Jawa Barat Menurut Kabupaten/Kota Berdasarkan Jenis Kelamin 2015

		Penduduk		
No.	Kabupaten/Kota	Laki-Laki	Perempuan	Jumlah
1	Bogor	2.728.381	2.602.768	5.331.149
2	Sukabumi	1.229.168	1.192.945	2.422.113
3	Cianjur	1.151.382	1.084.036	2.235.418
4	Bandung	1.761.460	1.708.933	3.470.393
5	Garut	1.274.098	1.252.088	2.526.186
6	Tasikmalaya	857.601	870.986	1.728.587
7	Ciamis	574.420	587.682	1.162.102
8	Kuningan	527.473	521.611	1.049.084
9	Cirebon	1.081.262	1.028.326	2.109.588
10	Majalengka	587.881	588.432	1.176.313
11	Sumedang	564.269	567.247	1.131.516
12	Indramayu	866.107	815.915	1.682.022
13	Subang	764.185	748.908	1.513.093
14	Purwakarta	463.506	446.501	910.007
15	Karawang	1.154.982	1.095.138	2.250.120
16	Bekasi	1.592.588	1.530.110	3.122.698
17	Bandung Barat	817.810	791.702	1.609.512
18	Pangandaran	193.402	194.918	388.320

Sumber: Jawa Barat Dalam Angka 2016

Tabel 4.3 Proyeksi Pertumbuhan Penduduk Provinsi Jawa Barat

Tahun	Pertumbuhan(%)
2010-2015	1,56
2015-2020	1,34
2020-2025	1,12

Sumber: Proyeksi Penduduk Indonesia 2010-2025

4.1.3 Jumlah Rumah Tangga

Provinsi Jawa Barat mengalami peningkatan jumlah banyaknya penduduk dan jumlah kepala rumah tangga dari tahun 1990 sampai dengan 2015, dengan jumlah penduduk dari 29.415.723 pada tahun 1990 dan meningkat hingga 46.709.569 pada tahun 2015. Uraian data rumah tangga akan disajikan dalam bentuk tabel dibawah ini.

Tabel 4.4 Jumlah Rumah Tangga dan Rata-rata Banyaknya Penduduk di Jawa Barat

Tahun	Penduduk	Rumah Tangga	Rata- rata Anggota Rumah Tangga
1990	29.415.723	6.938.222	4,2
2000	35.723.473	9.805.064	3,6
2010	43.053.732	11.573.793	3,7
2015	46.709.569	12.415.357	3,8

Sumber: Badan Pusat Statistik Provinsi Jawa Barat

4.1.4 Produk Daerah Regional Bruto (PDRB) Provinsi Jawa Barat

PDRB Provinsi Jawa Barat mencapai Rp. 1.030.389.777,90 rupiah, nilai tersebut digolongkan menjadi beberapa sektor yaitu sektor bisnis, sektor industri, sektor sosial dan sektor publik. Yang dapat dilihat pada tabel di bawah ini:

1. Sektor Bisnis

No.	Lapangan Usaha/Industri	PDRB (Juta)
1	Perdagangan Besar dan Eceran, Reparasi Mobil dan Sepeda	
1	Motor	211.369.008,20
2	Penyediaan Akomodasi dan Makan Minum	33.722.152,80
3	Informasi dan Komunikasi	34.152.993,30
4	Jasa Keuangan dan Asuransi	35.564.193,00
5	Real Estate	14.438.408,20
6	Jasa Perusahaan	5.438.669,00
7	Jasa Lainnya	25.218.731,70
	Jumlah	359.904.156,20

Tabel 4.5 PDRB Nilai Konstan Sektor Bisnis

2. Sektor Industri

Tabel 4.6 PDRB Nilai Konstan Sektor Industri

No.	Lapangan Usaha/Industri	PDRB (Juta)
1	Industri Pengolahan	604.374.036,00
	Jumlah	604.374.036,00

3. Sektor Sosial

Tabel 4.7 PDRB Nilai Konstan Sektor Sosial

No.	Lapangan Usaha/Industri	PDRB (Juta)
1	Jasa Keshatan dan Sosial	8.700.874,00
2	Jasa Lainnya	25.218.731,70
	Jumlah	33.919.605,7

4. Sektor Publik

Tabel 4.8 PDRB Nilai Konstan Sektor Publik

No.	Lapangan Usaha/Industri	PDRB (Juta)
1	Administrasi Pemerintahan, Pertahanan dan Jaminan Sosial Wajib	32.191.980,00
	Jumlah	32.191.980,00

4.2 Data Kelistrikan Porvinsi Jawa Barat

4.2.1 Data Pembangkit

Beban puncak sistem kelistrikan di Provinsi Jawa Barat diperkirakan sampai akhir Agustus 2015 sekitar 6.364 MW. Beban dipasok oleh pembangkit yang berada di grid 500 kV sebersar 8.588 MW.

Pembangkit di Jawa Barat yang berada di grid 500 kV adalah PLTG/PLTGU Muara Tawar, PLTA Saguling, PLTA Cirata dan pembangkit yang berada di grid 150 kV adalah PLTU Indramayu, PLTGU Cikarang Listrindo, PLTU Cirebon, PLTU Pelabuhan Ratu, PLTG sunyaragi serta beberapa PLTP dan PLTA.

Pasokan dari grid 500 kV melalui 7 GITET yaitu Bsndung Selatan, Cibatu, Cirata, Tasikmalaya, Ujung Berung, Cibinong dan Mandarican dengan kapasitas 7.000 MVA. Kelistrikan Provinsi Jawa Barat terdiri dari 6 subsistem yaitu :

- GITET Bandugn Selatan memasok Kab/Kota Bandung dan Kote Cimahi.
 GITET Ujungberung belum dapat bekerja optimal membangtu pasokan Kab/Kota Bandung dan Kota Cimahi.
- 2. GITET Cirata dab PLTA Jatiluhur memasok Kab. Purwakarta, Kab. Subang dan Kab. Bandung Barat.
- 3. GITET Tasikmalaya dan PLTP Kamojang, Kab. Garut, Kab. Sumedang, Kab. Banjar dan Kab. Ciamis.
- 4. GITET Mandarican memasok Kab. Cirebon, Kab. Kuningan dan Kab. Indramayu
- 5. GITET Cibatu memasok Tambun, Cikarang, Karawang dan Kab. Bekasi.
- 6. GITET Cibinong dan PLTP Salak memasok Kab. Bogor, Kab. Cianjur, Kab. Sukabumi beserta sebagian Jakarta Timur.

Rincian kapasitas pembangkit terpasang pada Provinsi Jawa Barat diuraikan pada tabel 4.9

Tabel 4.9 Rincian Kapasitas Pembangkit Terpasang di Jawa Barat

No.	Nama	Jenis Pembangkit	Jenis Bahan Bakar	Pemilik	Kapasitas Terpasang (MW)	Daya Mampu (MW)
1	Ubrug	PLTA	Air	Indonesi Power	18	18
2	Kracak	PLTA	Air	Indonesi Power	19	19
3	Plengan	PLTA	Air	Indonesi Power	7	7
4	Lamajan	PLTA	Air	Indonesi Power	20	20
5	Cikalong	PLTA	Air	Indonesi Power	19	19
6	Bengkok	PLTA	Air	Indonesi Power	3	3
7	Dago	PLTA	Air	Indonesi Power	1	1
8	Parakan	PLTA	Air	Indonesi Power	10	10
9	Saguling	PLTA	Air	Indonesi Power	701	698
10	Cirata	PLTA	Air	PJB	1008	948
11	Jatiluhur	PLTA	Air	Swasta	150	180

Tabel 4.9 Rincian Kapasitas Pembangkit Terpasang di Jawa Barat

No.	Nama	Jenis Pembangkit	Jenis Bahan Bakar	Pemilik	Kapasitas Terpasang (MW)	Daya Mampu (MW)
12	Indramayu 1-3	PLTU	Batu Bara	PLN	990	870
13	Cirebon	PLTU	Batu Bara	IPP	660	660
14	Pelabuhan Ratu 1-3	PLTU	Batu Bara	PLN	1050	969
15	Bekasi Power	PLTGU	Gas	IPP	120	120
16	M. Tawar B-1	PLTGU	BBM/Gas	РЈВ	640	615
19	M. Tawar B-5	PLTGU	Gas	PLN	234	214
17	M. Tawar B-2	PLTG	BBM/Gas	РЈВ	280	274
18	M. Tawar B-3-4	PLTG	BBM/Gas	PLN	858	840
20	Cikarang Listrindo	PLTG	Gas	Swasta	300	300
21	Sunyaragi 1-2	PLTG	BBM/Gas	Indonesi Power	20	18
22	Sunyaragi 3-4	PLTG	BBM/Gas	Indonesi Power	0	0
23	Salak 1-3	PLTP	Panas Bumi	Indonesi Power	165	170
24	Salak 4-6	PLTP	Panas Bumi	Swasta	165	183
25	Kamojang 1-3	PLTP	Panas Bumi	Indonesi Power	140	105
26	Kamojang 4	PLTP	Panas Bumi	Swasta	60	61
27	Kamojang 5	PLTP	Panas Bumi	Swasta	30	33
28	Drajat 1	PLTP	Panas Bumi	Indonesi Power	55	52
29	Drajat 2	PLTP	Panas Bumi	Swasta	70	90

Tabel 4.9 Rincian Kapasitas Pembangkit Terpasang di Jawa Barat

No.	Nama	Jenis Pembangkit	Jenis Bahan Bakar	Pemilik	Kapasitas Terpasang (MW)	Daya Mampu (MW)
30	Drajat 3	PLTP	Panas Bumi	Swasta	110	106
31	Wayang Windu	PLTP	Panas Bumi	Swasta	220	225
32	Patuha	PLTP	Panas Bumi	Swasta	55	55

Sumber: RUPTL PLN 2016-2025.

Kebutuhan Energi Listrik di Provinsi Jawa Barat

Energi listrik yang terjual pada tahun 2015 untuk Provinsi Jawa Barat mencapai 43.558,92 GWh, rincian konsumsi energi listrik di provinsi Jawa Barat per sektor kelompok pelanggan antara lain: untuk sektor rumah tangga sekitar 16.794,88 GWh, sektor industri sekitar 20.716,98 GWh, sektor bisnis sekitar 4.605,88 GWh, sektor sosial sekitar 787.79 GWh dan sektor publik sekitar 653,39 GWh. Adapun rincian konsumsi energi listrik per kelompok pelanggan provinsi Jawa Barat tahun 2015 terdapat pada tabel 4.10.

Tabel 4.10 Jumlah Energi Terjual per Kelompok Pelanggan tahun 2015

No.	Kelompok Pelanggan	Energi Terjual (GWh)
1	Rumah Tangga	16.794,88
2	Industri	20.716,98
3	Bisnis	4.605,88
4	Sosial	787,79
5	Publik	653,39
	43.558,92	

Sumber: Statistik PLN 2015

Pada tabel 4.10 terlihat bahwa sektor Industri mendominasi komsumsi energi listrik di provinsi Jawa Barat dengan porsentase mencapai 72,37% dari jumlah total penjualan energi listrik.

4.3 Potensi Energi Terbarukan

Saat ini pengembangan sumber Energi Baru Terbarukan (EBT) diatur oleh Perpres No 5 tahun 2006 tentang Kebijakan Energi Nasional (KEN). Kebijakan Energi Nasional (KEN) bertujuan untuk mencapai elastisitas energi yang lebih kecil dari satu pada tahun 2025. Elastisitas energi merupakan perbandingan antara banyaknya pertumbuhan konsumsi energi dengan banyaknya pertumbuhan ekonomi. Kebijakan Energi Nasianol (KEN) mempunyai sasaran yakni mendorong pemanfaatan energi melalui diversifikasi energi atau pemanfaatan berbagai sumber energi. Pemanfaatan berbagai sumber energi baru terbarukan kemudian dipertimbangkan dalam penyediaan energi. Energi baru terbarukan (EBT) yang dipertimbangkan dalam OEI 2014 yaitu biomassa, panas bumi, tenaga air, surya dan angin. Biomassa tersebut meliputi biomassa yang bersumber dari angin kota, limbah industri, pertanian, dan juga kehutanan. (Outlook Energi Indonesia, 2014). Potensi sumber energi baru terbarukan angin yang berada di Provinsi Jawa Barat cukup melimpah mencapai 4 m/s sampai dengan 5 m/s.

4.3.1 Potensi Energi Angin

Menurut LAPAN pada tahun 2006 potensi energi angin di Indonesia menurut skala dibagi menjadi 3, yaitu skala kecil dengan kecepatan 2,5 – 4,0 m/s dengan kapasitas (KWh) sampai dengan 10KWh yang berlokasi di wilayah Jawa, NTT, NTB, Maluku dan Sulawesi. Skala menengah dengan kecepatan angin 4,0 – 5,0 m/s dengan kapasitas (KWh) sampai dengan 10 – 100KWh yang berlokasi di wilayah NTT, NTB dan Sulawesi Utara. Skala besar dengan kecepatan angin angin lebih dari 0,5 m/s dengan kapasitas (KWh) hingga lebih dari 100KWh yang berlokasi di wilayah Sulawesi Selatan, NTB, NTT dan Pantai Selatan Jawa.

4.3.2 Data Kecepatan Angin di Jawa Barat

Berdasarkan data yang didapat dari Badan Pusat Statistik Provinsi Jawa Barat pada tahun 2016. Rata – rata kecepatan angin di Jawa Barat mencapai 4 m/s samapai dengan 5 m/s.

Tabel 4.11 Kecepatan Angin dan Kondisi Udara di Provinsi Jawa Barat

	Angin	(Knot)				
Bulan	Kecepatan Rata-rata	Kecepatan Terbesar	Penguapan	Lama Penyinaran Matahari	Tekanan Udara	Lembab Nisbi
2014					l	
Januari	4	9	3,3	42	923,8	82
Februari	4	12	3,6	47	922,9	80
Maret	3	10	3,4	52	923,7	82
April	3	30	3,7	64	923,6	81
Mei	3	9	3	58	923,6	81
Juni	3	8	2,7	57	923,1	80
Juli	3	9	3,2	66	924,1	77
Agustus	3	30	3,7	77	924,4	73
September	3	12	4,8	87	924,8	64
Oktober	4	16	4,1	64	924,2	67
November	3	13	3,5	49	923,7	79
Desember	4	12	3,8	43	922,9	80
Rata-rata	3	30	3,6	59	923,7	77
2015						
Januari	5	12	3,6	55	923,8	80
Februari	5	13	4	60	924,1	79
Maret	4	12	3,4	49	923,2	81
April	4	9	3,1	66	924,1	77
Mei	4	9	3,4	81	923,9	74
Juni	4	15	3,6	85	924,5	70
Rata-rata	4	12	3,5	66	923,9	77

Sumber: Badan Meteorologi dan Geofisika Provinsi Jawa Barat

Gambar 4.2 Peta Kecepatan Angin di Indonesia

4.4 Desain Sistem Pembangkit Listrik Tenaga Bayu

Dengan melakukan perancangan Sistem PLTB memodelkan sebuah sistem pembangkit skala kecil yang optimal. Dengan konfigurasi yang tepat dapat mengetahui kelayakan teknis, analisa beban terpasang, dan daya yang mampu dihasilkan dari sistem pembangkit.

4.4.1 Desain Sistem Turbin Angin

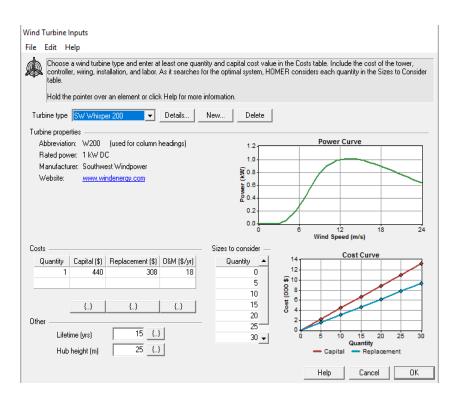
Pada desain sistem turbin angin memerlukan masukan data yang meliputi biaya kapital, kecepatan angin, dan ketinggian. Untuk perhitungan biaya akan meliputi biaya pembangunan turbin angin dan harga turbin angin. Dengan kecepatan angin yang di input, menghitung daya yang dapat dikeluarkan oleh turbin angin. Dengan kecepatan angin rata — rata di Jawa Barat mencapai 1.6 sampai dengan 3.3 m/s maka pemilihan turbin yang digunakan turbin angin jenis SouthWest Whisper 200 1 kW dengan kecepatan angin yang dibutuhkan untuk menggerakan turbin sebesar 3.1 m/s atau 7mph, sedangkan kecepatan rata — rata di Bandung 3.3 m/s dengan demikian maka turbin angin dapat berputar dan menghasilkan daya.

Table 4.12 Spesifikasi SW Whisper 200 1 kW

Rated Power	1000watts at 11.6 m/s (26 mph)
Monthly Energy	200 kWh/mo at 5.4 m/s (12 mph)
Start-Up Wind Speed	3.1 m/s (7 mph)
Rotor Diameter	2.7 m (9 ft)
Voltage	12, 24, 48 VDC ; HV Available at 120v, 230v
Overspeed Protection	Patented side-furling
Turbine Controller	Whisper controller (Optional with all Units)
Mount	6.35 cm pipe (2.5 in schedule 40)
Body	Cast alumunium with corrosion resistan finish

Table 4.12 Spesifikasi SW Whisper 200 1 kW

Blades	Carbon reinforced fiberglass
Survival Wind Speed	55 m/s (120 mph)
Weight	30 kg (65 lb) box: 39.46 kg (87 lb)
Shipping Wind Speed	1295 x 508 x 30 mm (51 x 20 x 13 in)
Warraanty	5 year limited warranty

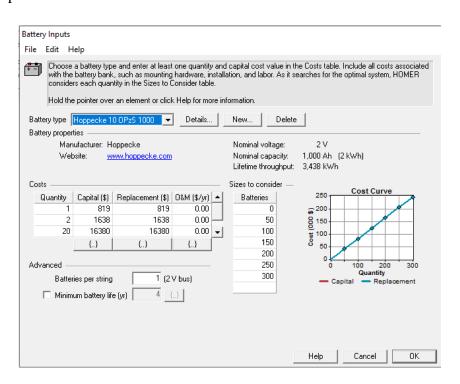

Sumber: www.windenergy.com

Turbin angin SW Whisper 200 1 kW merupakan tipe turbin angin dengan kapasitas daya rendah yang cocok digunakan sebagai penyuplai energi listrik rumah tangga di daerah Bandung. Turbin angin SW Whisper tetap berjalan dengan optimal di daerah Bandung dikarenakan turbin angin ini mampu mulai bekerja pada kecepatan angin minimal yaitu 3.1 m/s dan mampu tetap bertahan dengan kecepatan angin sebesar 55 m/s. Turbin jenis SW Whisper 200 1 kW juga sangat ideal juga jika dipasang pada daerah pesisir pantai dikarenakan bagian turbin terbuat dari alumunium yang tahan terhadap korosi.

Gambar 4.3 Turbin Angin SW Whisper 200 1 kW

Sumber: www.sc02.alicdn.com

Gambar 4.4 Konfigurasi Sistem Turbin Angin SW Whisper 200


Turbin angin jenis SW Whisper 200 1 kW memiliki harga untuk satu turbinnya adalah sebesar \$ 440. Sehingga untuk biaya perbaikan atau zreplacement sebesar 70% dari harga awal turbin SW Whisper 200 1 kW yaitu sekitar \$ 308. Pada hal ini dikarenakan setiap turbin angin yang mengalami kerusakan tidak semua komponen pada turbin angin tersebut diganti, sehingga masih ada komponen yang dapat digunakan kembali jika mengalami kerusakan, namun jika memang tidak dapat digunakan kembali dan mengalami kerusakan parah maka kerusakan harus segera diganti maupun diperbaiki agar turbin angin dapat berfungsi dengan normal kembali. Biaya penggantian atau replacement cost akan dikenakan pada pengoperasian yang telah berjalan selama 15 tahun.

Turbin angin pada skala kecil sekitar dibawah 10 kW pada umumnya biaya operational & maintenance tidak diperlukan, namun jika blade pada turbin menerima angin terlalu kencang maka turbin dapat rusak ketika menggunakan pengereman mendadak dan darurat. Sehingga biaya operational & maintenance pada teknologi turbin angin yang baru ataupun lama rata – rata sebesar 4%. Meskipun turbin angin yang digunakan merupakan skala kecil pada umumnya

biaya operasional dan pemeliharaan tetap ada untuk perbaikan, pergantian dan pemeliharaan komponen pada turbin angin yang telah rusak. Pemeliharaan pada turbin skala kecil meliputi pengecekan bilah turbin, pembersihan dan pengecekan kotoran yang melekan pada bilah turbin maupun pada generator, pemeriksaan terhadap korosi dan pemeriksaan ekor turbin sebagai pengubah arah.

4.4.2 Desain Sistem Baterai

Pada pemilihan baterai menggunakan baterai dengan jenis Hoppecke OPsZ 1000, dengan tegangan normal yang dimiliki sebesar 2 volt, dengan kapasitasnya 1000 Ah atau sebesar 2 kWh. Harga baterai Hoppecke OPsZ 1000 \$819 dengan biaya penggantian yang sama yaitu sebesar \$819 dikarenakan untuk sistem baterai jika terjadi kerusakan harus diganti dengan baterai yang baru dengan pergantian seluruh baterai. Sehingga biaya operasional dan pemeliharaan pada sistem baterai sebesar \$0. Perancangan sistem baterai yang digunakan adalah 1 buah baterai pada setiap 1 turbinnya yang disusun secara seri agar mendapatkan sistem pembangkit yang optimal.

Gambar 4.5 Konfigurasi Sistem Baterai Hoppecke OPsZ 1000

Gambar 4.6 Jenis Baterai Hoppecke OPsZ 1000

Sumber: www.ukbatterysales.co.uk

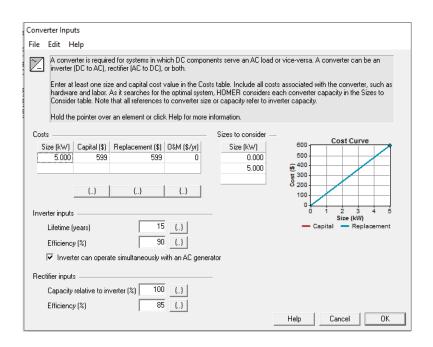
4.4.3 Desain Sistem Converter

Pada pemilihan untuk perancangan sistem converter ini menggunakan Pascal dari de ke ac dengan kapasitas 5 kW frekuensi 50 Hz dan memiliki harga sebesar \$599. Berikut merupakan spesifikasi dari converter yang digunakaan untuk sistem pada turbin angin.

Table 4.13 Spesifikasi Inverter 5 kW

Brand Name	PASCAL
Model Number	BG5KTL
Rated Power (W)	5000 Watt
Size	560 x 415 x 190 mm
Weight	25.5 kg
Input Voltage	100V – 550V DC
Output Voltage	180V - 270V AC
Type	DC/AC Inverter

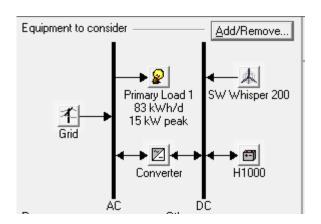
Table 4.13 Spesifikasi Inverter 5 kW


Output Frequency	50 Hz/60 Hz
Max. Output AC Current	20A
Display	3.5 inches LCD display
Protection Degree	IP65
Operatin Temperature	-25°c - +60°c

Sumber: www.pascalpower.com

Converter Pascal BG4KTL merupakan converter dengan daya 5000 Watt atau 5 kW dengan berat sekitar 25.5 kg. Memiliki tegangan input mulai dari 100 V hingga mencapai 550 V dengan arus DC, memliki tegangan keluar dari 180 V hingga mencapai 270 V dengan arus AC. Converter ini diproteksi dengan sertifikat IP65 yaitu anti air. Pada perencanaan converter di perangkat lunak Homer harga converter dimasukan seharga \$599 dan biaya operasi dan pemeliharaan \$0, sehingga biaya penggantiannya sama dengan biaya awal investasi. Hal ini dikarenakan jika converter mengalami kerusakan sulit untuk diperbaiki sehingga converter yang telah rusak harus diganti keseluruhan.

Gambar 4.7 Converter Pascal BG5KTL


Gambar 4.8 Konfigurasi Sistem Converter pada Homer Energy

Sumber: www.pascalpower.com

a. Sistem Konfigurasi Grid

Pada perancangan pembangkit digunakannya sistem terkoneksi dengan grid, hal ini bertujuan untuk mengantisipasi jika terjadinya kelebihan energi listrik yang dapat dijual ke PLN. Hal ini disebutkan dalam peeraturan menteri ESDM nomor 04 tahun 2012 bahwa PLN wajib menggunakan energi terbarukan dari badan usaha milik negara, badan usaha milik daerah, badan usaha swasta, koperasi dan swadaya masyarakat dengan skala kecil hingga skala menegah dengan kapasitas mencapai 10 MW atau kelebihan dari tenaga listrik (excess power) untuk memperkuat sistem penyediaan listrik pada tempat tersebut.

Tarif pemakaian biaya listrik menurut data PLN untuk keperluan rumah tangga dibagi menjadi 3 jenis daya dan tarifnya. Untuk daya listrik dengan 900 VA tarifnya Rp. 605/kWh, untuk 1300 VA tarifnya Rp 1410/kWh dan yang terakhir untuk daya 2200 VA tarifnya sama dengan 1300 VA yaitu Rp 1410/kWh, sedangkan untuk pembelian energi listrik oleh PLN sebesar Rp 1410/kWh.

Gambar 4.9 Konfigurasi Sistem Grid

Pada simulasi ini konfigurasi sistem grid untuk pembelian dari sistem grid sebesar 16 kW, hal ini dikarenakan untuk membandingkan sebuah sistem on grid dengan sistem pembangkit listrik tenaga angin dalam penyediaan energi listrik di daerah pesisir pantai, sehingga dapat diketahui mana sistem yang lebih baik dan lebih murah, serta mengetahui kerugian dan keutungan kedua sistem tersebut. Sehingga simulasi ini benar – benar mampu sebagai penyuplai energi listrik terbarukan. Untuk penjualan kepada PLN sebesar \$0, karena pada sistem perencanaan turbin angin ini tidak dijual dan untuk konsumsi sendiri.

4.4.4 Hasil Simulasi dan Analisa

Dalam perangkat LEAP penyusunan model energi menggunakan metode intensitas energi. Intensitas energi adalah suatu ukuran dalam penggunaan energi terhadap sektor aktivitas. Nilai intensitas energi dihitung atas konsumsi energi listrik pada setiap sektor (subsektor) yang dibagi dengan level aktivitas (Heaps, 2009).

Penggunaan energi listrik dibagi menjadi 5 sektor, yaitu sektor rumah tangga, sektor industri, sektor bisnis, sektor sosial dan sektor publik. Pada sektor rumah tangga level aktivitasnya diwakili oleh jumlah rumah tangga. Intensitas energi listrik pada sektor rumah tangga merupakan penggunaan energi listrik perkapita pertahun. Sedangkan pada sektor industri, sektor bisnis, sektor sosial dan sektor publik, level aktivitasnya diwakili oleh nilai Pendapatan Daerah Regional

Bruto (PDRB) oleh sebab itu intensitas energi listrik pada keempat sektor tersebut merupakan penggunaan energi listrik dalam juta rupiah pertahun.

Penelitian ini menggunakan tahun dasar 2015 dan tahun akhir simulasi 2025 sebagai dasar pemodelan energi yang akan dianalisis. Pemodelan energi yang akan disimulasikan dibagi menjadi 2 skenario, yaitu skenario Dasar (DAS) dan skenario Energi Terbarukan (EBT). Skenari Dasar (DAS) adalah skenario berdasarkan pada keadaan di tahun dasar simulasi yang berkaitan dengan pola konsumsi energi dan kebijakan-kebijakan pemerintah pada sektor energi. Sedangkan pada skenario Energi Terbarukan (EBT) dalam penyediaan energi listrik diikutsertakan peran energi terbarukan dalam model energi.

Laju pertumbuhan penduduk berdasarkan data dari proyeksi pertumbuhan penduduk Indonesia yang telah dihitung oleh Bappenas-BPS-UNFPA pada tahun 2013. Laju pertumbuhan penduduk provinsi Jawa Barat berdasarkan data Bappenas-BPS-UNFPA dapat dilihat pada tabel 4.12.

Tabel 4.14 Asumsi Pertumbuhan Penduduk Provinsi Jawa Barat

No	Interval	Pertumbuhan Penduduk
1	2010-2015	1,56
2	2015-2020	1,34
3	2020-2025	1,12

Sumber: Proyeksi Pertumbuhan Indonesia 2010-2035

Laju pertumbuhan penduduk rata-rata per lima tahun tersebut kemudian dimasukkan kedalam pemodelan LEAP pada permintaan energi (demand) dalam proyeksi skenario dasar (DAS) pada sektor rumah tangga.

Laju pertumbuhan PDRB Provinsi Jawa Barat berdasarkan data pada Rencana Umum Penyedia Tenaga Listrik (RUPTL) tahun 2016-2025. Asumsi laju pertumbuhan PDRB Provinsi Jawa Barat dalam sepuluh tahun mendatang dapat dilihat pada tabel 4.15.

Tabel 4.15 Pertumbuhan PDRB Provinsi Jawa Barat

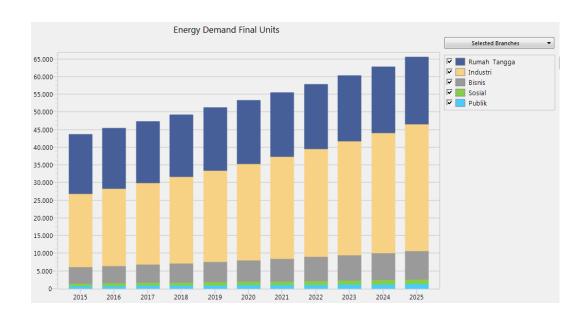
No	Tairralon	Tal	nun
No	Triwulan	2015	2016
1	I	4,93 %	5,08 %
2	II	4,88 %	5,88 %
3	III	5,03 %	5,76 %

Sumber: BPS Provinsi Jawa Barat

Laju pertumbuhan PDRB pada tabel diatas kemudian dimasukkan dalam pemodelan LEAP untuk permintaan energi dalam skenario dasar (DAS) untuk sektor industri, sektor bisnis, sektor sosial dan sektor pubilk. Selain pertumbuhan penduduk dan PDRB, rasio elektrifikasi juga merupakan faktor yang sangat mempengaruhi konsumsi energi listrik. Rasio elektrifikasi adalah perbandingan jumlah penduduk yang telah menggunakan energi listrik dengan jumlah penduduk yang terdapat pada suatu daerah. Rasio elektrifikasi Provinsi Jawa Barat mencapai 93,73 % (Statistik PLN, 2015).

4.4.5 Menghitung Permintaan Energi Listrik

Untuk menghitung permintaan energi listrik di provinsi Jawa Barat menggunakan metode intensitas energi. Intensitas energi adalah suatu ukuran dalam penggunaan energi terhadap sektor aktivitas. Nilai intensitas energi dihitung atas konsumsi energi listrik pada setiap sektor (subsektor) yang dibagi dengan level aktivitas. Pada aplikasi LEAP dalam menghitung permintaan energi berdasarkan persamaan 4.1.


$$D = TA \times EI$$

Pada persamaan diatas, jumlah energi yang dibutuhkan (D) berbanding lurus dengan aktivitas di sektor energi (TA) dan intensitas energi (EI). Aktivitas energi direpresentasikan oleh variabel penggerak yang berupa data demografi atau data makro-ekonomi, sedangkan intensitas energi adalah energi yang dikonsumsi persatuan aktivitasnya. Setelah melakukan simulasi permintaan energi pada

aplikasi LEAP didapatkan hasil dan data yang disajikan pada tabel 4.16 dan gambar 4.18.

Tabel 4.16 Hasil Simulasi Permintaan Energi Tahun 2015-2025

	Sektor (MWh)					
Tahun	Rumah Tangga	Industri	Bisnis	Sosial	Publik	Total
2015	16.794,9	20.717,0	4.605,9	787,8	725,3	43.630,9
2016	17.019,9	21.981,6	4.867,0	823,5	766,4	45.377,5
2017	17.248,0	23.132,9	5.143,0	879,7	809,9	47.213,4
2018	17.479,1	24.444,5	5.434,6	929.5	855,8	49.143,6
2019	17.713,3	25.830,5	5.742,7	982,2	904,3	51.173,2
2020	17.911,7	27.295,1	6.068,4	1.037,9	955,6	51.173,2
2021	18.112,3	28.842,8	6.412,4	1.096,8	1.009,8	55.474,1
2022	18.315,2	30.478,1	6.776,0	1.159.0	1.067,1	57.795,4
2023	18.520,3	32.206,2	7.160,2	1.224,7	1.127,6	60.239,0
2024	18.727,8	34.032,3	7.566,2	1.294,1	1.191,5	62,811,9
2025	18.937,5	35.962,0	7.995,2	1.367,5	1.259,1	65.521,3

Gambar 4.10 Grafik Hasil Simulasi Permintaan Energi Listrik 2015 – 2025

Tabel 4.17 Persentase Pertumbuhan Kebutuhan Energi Listrik Tahun 2015-2025

Sektor (MWh)					
Rumah Tangga	Industri	Bisnis	Sosial	Publik	Total
38,5%	47,5%	10,6%	1,8%	1,7%	100,0%
37,5%	48,2%	10,7%	1,8%	1,7%	100,0%
36,5%	49,7%	11,1%	1,9%	1,7%	100,0%
35,6%	49,7%	11,1%	1,9%	1,7%	100,0%
34,6%	50,5%	11,2%	1,9%	1,8%	100,0%
33,6%	51,2%	11,4%	1,9%	1,8%	100,0%
32,7%	52,0%	11,6%	2,0%	1,8%	100,0%
31,7%	52,7%	11,7%	2,0%	1,9%	100,0%
30,7%	53,5%	11,9%	2,0%	1,9%	100,0%
	38,5% 37,5% 36,5% 35,6% 34,6% 32,7% 31,7%	Rumah Tangga Industri 38,5% 47,5% 37,5% 48,2% 36,5% 49,7% 35,6% 49,7% 34,6% 50,5% 33,6% 51,2% 32,7% 52,0% 31,7% 52,7%	Rumah Tangga Industri Bisnis 38,5% 47,5% 10,6% 37,5% 48,2% 10,7% 36,5% 49,7% 11,1% 35,6% 49,7% 11,1% 34,6% 50,5% 11,2% 33,6% 51,2% 11,4% 32,7% 52,0% 11,6% 31,7% 52,7% 11,7%	Rumah Tangga Industri Bisnis Sosial 38,5% 47,5% 10,6% 1,8% 37,5% 48,2% 10,7% 1,8% 36,5% 49,7% 11,1% 1,9% 35,6% 49,7% 11,1% 1,9% 34,6% 50,5% 11,2% 1,9% 33,6% 51,2% 11,4% 1,9% 32,7% 52,0% 11,6% 2,0% 31,7% 52,7% 11,7% 2,0%	Rumah Tangga Industri Bisnis Sosial Publik 38,5% 47,5% 10,6% 1,8% 1,7% 37,5% 48,2% 10,7% 1,8% 1,7% 36,5% 49,7% 11,1% 1,9% 1,7% 35,6% 49,7% 11,1% 1,9% 1,7% 34,6% 50,5% 11,2% 1,9% 1,8% 33,6% 51,2% 11,4% 1,9% 1,8% 32,7% 52,0% 11,6% 2,0% 1,8% 31,7% 52,7% 11,7% 2,0% 1,9%

2024	29,8%	54,2%	12,0%	2,1%	1,9%	100,0%
2025	28,9%	54,9%	12,2%	2,1%	1,9%	100,0%

Hasil dari simulasi dari sofware LEAP didapatkan jumlah kebutuhan energi listrik pada tahun awal simulasi sebesar 43.630,9 MWh dan pada tahun awal simulasi mengalami peningkatan dengan jumlah total kebutuhan energi listrik mencapai 65.521,3 MWh seperti yang telah ditunjukan pada tabel. Pada semua sektor mengalami peningkatan persentase sebesar 0,1% mengalami peningkatan persentase hingga mencapai titik puncak pada sektor industri 47,5%. Dan Pertumbuhan penduduk mempengaruhi besarnya peningkatan kebutuhan energi pada setiap sektor industri maupun rumah tangga, sektor bisnis, dan sektor publik dipengaruhi oleh data pertumbuhan PDRB.

4.4.6 Proyeksi Pembangunan Pembangkit Listrik dengan Sumber Energi Baru Terbarukan (EBT)

Skenario energi baru ini terbarukan (EBT) dibuat dengan tujuan untuk memanfaatkan pterbarukan potensi energi terbarukan yang ada di provinsi jawa barat berupa angin sebagai sumber energi pembangkit listik. Skenario energi terbarukan tersebut mulai dikembangkan pada tahun 2018 dan berakhir tahun 2025. Proyeksi pembangunan pembangkit listrik tenaga angin pada tabel 4.18.

Tabel 4.18 Proyeksi Pembangunan Pembangkit Listrik dengan Sumber Energi Baru Terbarukan (EBT)

Tahun	Kapasitas Daya (MW) PLTB
2018	4
2019	-
2020	-

2021	6
2022	-
2023	-
2024	-
2025	8

Pembangunan pembangkit listrik tenaga angin pada skenario pada energi terbarukan (EBT) akan dimulai pada tahun 2018 sebesar 4 MW. Pada tahun 2021 6 MW dan pada tahun 2025 8 MW, sehingga pada tahun akhir simulasi total aktifitas daya yang mampu dibangkitkan pembangkit tenaga angin mencapai 18 MW.

4.4.7 Kapasitas Daya Pembangkit Listrik Tenaga Angin (PLTB)

Dalam sekenario pembangungan pembangkit listrik tenaga angin yang direncanakan dibangun pada tahun 2018-2025 didapatkan hasil kapasitas daya pertahun yang dapat dilihat pada tabel 4.19.

Tabel 4.19 Kapasitas Daya Pembangkit Listrik Tenaga Angin (PLTB) pada Software LEAP

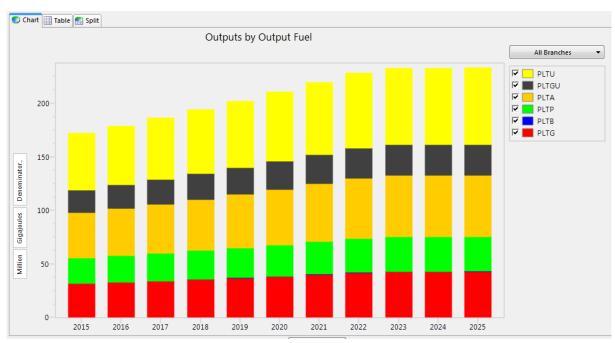
Tahun	Kapasitas Daya (MW)
-------	------------------------

	PLTB
2018	4
2019	4
2020	4
2021	4
2022	10
2023	10
2024	10
2025	18

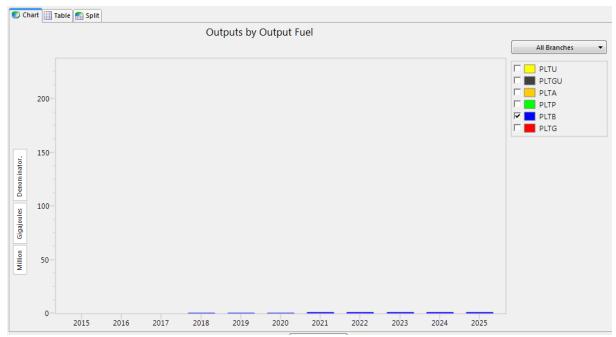
Pada tahun 2018 dibangun pembangkit listrik tenaga angin dengan kapasitas daya sebesar 4 MW, kemudian pada tahun 2022 ditambahkan kapasitas daya sebesar 6 MW sehingga total kapasitas daya 2022 menjadi 10 MW. Pada akhir tahun simulasi dilakukan pemambahan kapasitas daya sebesar 8 MW sehingga kapasitas dayanya menjadi 18 MW.

4.4.8 Energi yang Dihasilkan Pembangkit Tenaga Angin

Dari skenario pembangkit tenaga angin yang telah direncanakan, energi listrik yang dihasilkan pada pembangkit listrik tenaga angin sampai periode akhir dan dapat dilihat pada tabel 4.20.


Tabel 4.20 Hasil Produksi Energi Listrik

Branches	2015	2016	2017	2018	2019	2020
PLTU	14.684,38	15.279,95	15.906,47	16.557,19	17.250,57	17.967,27
PLTGU	5.920,89	6.161,03	6.413,64	6.676,02	6.955,60	7.244,58
PLTA	11.790,47	12.268,67	12.771,71	13.294,20	13.850,93	14.426,39
PLTP	6.639,62	6.908,91	7.192,19	7.486,42	7.799,94	8.124,00
PLTB	-	-	-	27,57	28,72	29,91
PLTG	8.684,76	9.037,00	9.407,54	9.792,40	10.202,48	10.626,36
Total	47.720,11	49.655,54	51.691,56	53.833,80	56.088,24	58.418,51

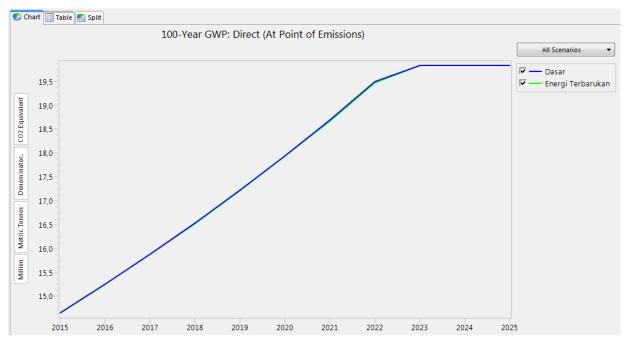

Tabel 4.20 Hasil Produksi Energi Listrik

Branches	2021	2022	2023	2024	2025
PLTU	18.707,78	19.502,40	19.867,68	19.867,68	19.867,68
PLTGU	7.543,16	7.863,56	8.010,84	8.010,84	8.010,84
PLTA	15.020,96	15.658,98	15.952,28	15.952,28	15.952,28

PLTP	8.458,82	8.818,11	8.983,27	8.983,27	8.983,27
PLTB	77,87	81,17	82,69	82,69	148,85
PLTG	11.064,32	11.534,28	11.750,31	11.750,31	11.750,31
TOTAK	60.872,92	63.458,50	64.647,08	64.647,08	64.713,24

Gambar 4.11 Grafik Hasil Produksi Energi Listrik Keseluruhan

Gambar 4.12 Grafik Hasil Produksi Energi Listrik PLTB


Pada tahun 2018 pembangkit tenaga angin dengan kapasitas daya sebesar 4 MW, kemudian pada tahun 2022 6 MW, dan pada akhir tahun 2025 simulasi dilakukan penambahan kapasitas daya sebesar 8 MW. Sehingga total kapasitas dayanya menjadi 18 MW. tetapi didapatkan hasil dari simulasi total energi yang dapat di bangkitkan oleh PLTB adalah 559,47 MWh total dari semua pembangunan PLTB pada tahun 2025.

4.4.9 Peran Energi Terbarukan dalam Menekan Pertumbuhan CO2

Hasil simulasi perbandingan pertumbuhan CO₂ antara skenario dasar (DAS) dengan skenario energi terbarukan disajikan pada tabel 4.18. Pada skenario energi terbarukan ditambah dengan PLTB untuk membantu memenuhi kebutuhan energi listrik di provinsi Jawa Barat. Jika pada skenario dasar (DAS) hanya disuplai oleh pembangkit tenaga batubara dan gas alam, maka pada skenario energi terbarukan (EBT) ditambah pembangkit listrik tenaga bayu (PLTB).

Tabel 4.21 Perbandingan Total Pertumbuhan Emisi ${\rm CO_2}$ (juta ton)

	Skenario Total			
	Pertumbuhan Emiai			
Tahun	CO₂ (Juta Ton)			
	Skenario	Skenario		
	Dasar	EBT		
2015	14,66	14,66		
2016	15,25	15,25		
2017	15,88	15,88		
2018	16,54	16,53		
2019	17,23	17,22		
2020	17,94	17,94		
2021	18,70	18,67		
2022	19,49	19,47		
2023	19,83	19,83		
2024	19,83	19,83		
2025	19,83	19,83		

Gambar 4.12 Grafik Perbandingan Pertumbuhan Emisi ${\rm CO_2}$

Pada tabel 4.21 dan gambar 4.17 terlihat bahwa jumlah total emisi $\rm CO_2$ pada skenario dasar (DAS) dan energi terbarukan (EBT) selama periode simulasi 2015-2025 terus mengalami peningkatan. Pada tahun 2018 emisi $\rm CO_2$ yang dihasilkan

mencapai 16,54 juta ton dalam skenario dasar (DAS), sedangkan pada pada skenario energi terbarukan (EBT) pada tahun yang sama emisi CO₂ yang dihasilkan sebesar 16,53 juta ton. Pada akhir tahun simulasi emisi CO₂ pada skenario dasar (DAS) mencapai 19,83 juta ton, sedangkan pada skenario energi terbarukan (EBT) sebesar 19,83 juta ton. Emisi CO₂ yang dihasilkan pada skenario energi terbarukan lebih rendah dibanding dengan pada skenario dasar (DAS). Hal tersebut menunjukan bahwa penggunaan energi baru terbarukan dapat menekan pertumbuhan emisi CO₂.

4.4.10 Perbandingan Biaya dari Implementasi Energi Terbarukan

Pembangkit listrik memiliki biaya operasionalnya masing – masing. Biaya tersebut meliputi *copital cost, variable O&M serta fix O&M*. Capital cost merupakan biaya modal yang dikeluarkan untuk pembangunan pembangkit listrik. *Variable O&M* adalah biaya yang dikeluarkan selama pembangkit listrik beropersi, seperti biaya operasional dan biaya perbaikan. Sedangkan *fix O&M* merupakan biaya kontruksi yang dikeluarkan untuk pembangunan untuk listrik terlepas dari pembangkit listrik tersebut digunakan maupun tidak. Hasil simulasi biaya sosial pada sekenario dasar (DAS) dan sekenario energi terbarukan (EBT) pada provinsi Jawa Barat pada perhitungan di bawah ini.

Tabel 4.22 Hasil Simulasi Sosial Cost Pembangkit Listrik Tenaga Angin

Cost Categories	Transformasi Capital	Transformasi Fixed O&M	Transformasi Variabel O&M	Total
2015	-	0.10	767,76	767,86
2016	-	0,1	798,9	799
2017	-	0,1	831,65	831,75
2018	0	0,1	865,68	865,78
2019	0	0,1	901,93	902,04
2020	0	0,1	939,4	939,5
2021	0	0,1	978,12	978,22

Tabel 4.22 Hasil Simulasi Sosial Cost Pembangkit Listrik Tenaga Angin

Cost Categories	Transform asi Capital	Transfor masi Fixed O&M	Transfor masi Variabel O&M	Total
2022	0	0,1	1.019,66	1.019,77
2023	0	0,1	1.038,76	1.038,87
2024	0	0,1	1.038,76	1.038,87
2025	0	0,11	1.038,76	1.038,87

Gambar 4.13 Hasil Simulasi Sosial Cost Oembangkit Listrik Tenaga Angin

Pada tabel 4.20 serta gambar 4.13 ditampilkan hasil simulasi biaya sosial dari pembangkit listrik angin. Dari simulasi tersebut didapatkan bahwa pada tahun awal 2018 pembangunan pembangkit listrik tenaga angin biaya investasi yang dibutuhkan mencapai 767,86 Milyar U.S. Dollar, selanjutnya pada tahun 2021 diasumsikan adanya penambahan kapasitas daya pembangkit listrik sehingga biaya investasi meningkat menjadi 978,22 Milyar U.S. Dollar. Pada tahun akhir simulasi 2025 terjadi penambahan kapasitas daya sehingga biaya investasi meningkat menjadi 1.038,87 Milyar U.S. Dollar. Sehingga total biaya yang dibutuhkan selama periode simulasi mencapai 2.784,95 Milyar U.S Dollar. Sebagai perbandingan

biaya yang dibutuhkan untuk pembangkit listrik tenaga surya (PLTS) kapasitas 1 MW diperlukan 20 miliar rupiah, sedangkan untuk pembangkit listrik tenaga uap (PLTU) diperlukan sekitar 10 miliar rupiah per 1 MW menurut Dirjen Energi Baru Terbarukan dan Konservasi Energi (EBTKE) Kementrian ESDM (tribunnews.com).