LAMPIRAN

Lampiran 10 Nilai Perbandingan Tegangan Sinyal *peak to peak Pada Alat EMG Terkalibrasi*

	Data pasien		MODUL		PEMBA	NDING	Rata - rata	Rata - rata		_	Rata-Rata	
Nama Pasien			Pengukuran ke-1	Pengukuran ke-2	Pengukuran ke-1	Pengukuran ke-1 Pengukuran ke-2		Pembanding	SELISIH	Error	Error	
	Kanan	Kontraksi Radialis	3,75	3,05	3,58	3,27	3,4	3,425	0,025	0,73%		
	Ndiidii	Kontraksi Bicep	2,75	2,75	2,78	2,76	2,75	2,77	0,02	0,72%	0.64%	
LIUS	Viri	Kontraksi Radialis	1,17	1,12	1,16	1,14	1,145	1,15	0,005	0,43%	0,04%	
	NIII	Kontraksi Bicep	0,7	0,8	0,79	0,72	0,75	0,755	0,005	0,66%		
KURNI -	Kanan	Kontraksi Radialis	0,89	1,62	0,81	1,71	1,255	1,26	0,005	0,40%		
	Naliali	Kontraksi Bicep	1,52	1,39	1,58	1,34	1,455	1,46	0,005	0,34%	0 570/	
	Kiri	Kontraksi Radialis	1,46	1,47	1,49	1,47	1,465	1,48	0,015	1,01%	0,5770	
		Kontraksi Bicep	0,97	0,88	0,92	0,94	0,925	0,93	0,005	0,54%		
	Kanan	Kontraksi Radialis	1,32	1,28	1,26	1,37	1,3	1,315	0,015	1,14%		
		Kontraksi Bicep	0,97	0,92	0,93	0,95	0,945	0,94	-0,005	0,53%	1 07%	
KAUTJAN	Kiri	Kontraksi Radialis	3,34	2,96	3,41	2,97	3,15	3,19	0,04	1,25%	1,0770	
		Kontraksi Bicep	2,5	2,63	2,33	2,87	2,565	2,6	0,035	1,35%	%	
	Kanan	Kontraksi Radialis	1,49	1,64	1,61	1,49	1,565	1,55	-0,015	0,97%		
		Kontraksi Bicep	0,82	0,95	0,88	0,92	0,885	0,9	0,015	1,67%	1 150/	
LUQIVIAN	Viri	Kontraksi Radialis	1,18	1,2	1,12	1,29	1,19	1,205	0,015	1,24%	1,13%	
		KIri	Kontraksi Bicep	0,62	0,79	0,79	0,63	0,705	0,71	0,005	0,70%	

Skema Elektromiograf

Lampiran 2 Hasil Alat Elektromiograf

Lampiran 3 Elektromiograf Natus

Elektromiograf *Natus* merupakan elektromiograf yang sudah terkalibrasi yang terdapat pada RSUD A. Wahab Sjahranie Samarinda. Elektromiograf *Natus* pada penelitian ini merupakan alat pembanding atau kalibrator. Berikut gambar dari Elektromiograf *Natus* :

Natus UltraPro S100 dapat mengkalibrasi secara otomatis ketika pertama kali di nyalakan.

Listing Program Pada Software Arduino Uno

#include <SoftwareSerial.h>

```
SoftwareSerial BTSerial(10, 11); // RX | TX
```

```
#define ldrPin A0
```

int ldrValue = 0;

void setup()

```
{
```

pinMode(9, OUTPUT); // this pin will pull the HC-05 pin 34 (key pin) HIGH to switch module to AT mode

```
pinMode(ldrPin, INPUT);
```

BTSerial.begin(9600);

Serial.begin(9600);

```
}
```

void loop()

```
{
```

ldrValue = analogRead(ldrPin);

float voltage = ldrValue*1000.0*(5.0/1023.0);

BTSerial.println(voltage);

Serial.println(voltage);

delay(10);

```
digitalWrite(9, HIGH);
```

delay(10);

Listing Program Pada *Software MatLab* untuk Menampilkan Tampilan Sinyal

function varargout = PROJECT2(varargin) % PROJECT2 MATLAB code for PROJECT2.fig PROJECT2, by itself, creates a new PROJECT2 or raises the 8 existing 8 singleton*. 8 % H = PROJECT2 returns the handle to a new PROJECT2 or the handle to the existing singleton*. 8 8 % PROJECT2('CALLBACK', hObject, eventData, handles, ...) calls the local function named CALLBACK in PROJECT2.M with the given input 8 arguments. 8 PROJECT2 ('Property', 'Value',...) creates a new PROJECT2 or 8 raises the existing singleton*. Starting from the left, property 8 value pairs are applied to the GUI before PROJECT2 OpeningFcn gets called. 2 An unrecognized property name or invalid value makes property 2 application stop. All inputs are passed to PROJECT2 OpeningFcn via varargin. 2 *See GUI Options on GUIDE's Tools menu. Choose "GUI allows 2 only one instance to run (singleton)". 2 2 % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help PROJECT2 % Last Modified by GUIDE v2.5 26-Jul-2017 16:22:54 % Begin initialization code - DO NOT EDIT gui Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @PROJECT2_OpeningFcn, ... 'gui_OutputFcn', @PROJECT2_OutputFcn, ... 'gui LayoutFcn', [],... 'gui Callback', []); if nargin && ischar(varargin{1}) gui State.gui Callback = str2func(varargin{1}); end

```
if nargout
    [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else
    gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before PROJECT2 is made visible.
function PROJECT2 OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of
MATLAB
% handles
           structure with handles and user data (see GUIDATA)
% varargin command line arguments to PROJECT2 (see VARARGIN)
uiwait(msgbox({'Welcome to EMG Monitoring',' ',...
                  'TEKNIK ELEKTROMEDIK ',...
    'UNIVERSITAS MUHAMMADIYAH YOGYAKARTA',...
    'automatically recognize EMG Monitoring',...
    'PRESENT BY. LUQMAN Eng', ' ',...
    ' ','Just Like, Dont Comment'}));
h=waitbar(1, ' BISMILLAH..INSYA ALLAH SUKSES'); %Waitbar is here to
measure time and show when initialization
tic
                                              %is over
toc
commandwindow
close(h);
% Choose default command line output for PROJECT2
handles.output = hObject;
axes(handles.axes2)
imshow('D:\DATA PRIBADI\KTI L\pic rangkaian\logo\logo tem.jpg');
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes PROJECT2 wait for user response (see UIRESUME)
% uiwait(handles.figure1);
global a;
instrhwinfo('Bluetooth', 'HC-05')
a = Bluetooth('HC-05', 1)
out1 = instrfind(a);
fclose(out1);
fopen(a);
% --- Outputs from this function are returned to the command line.
function varargout = PROJECT2 OutputFcn(hObject, eventdata,
handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
```

```
% eventdata reserved - to be defined in a future version of
MATLAR
% handles
           structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in play_button.
function play button Callback(hObject, eventdata, handles)
% hObject handle to play button (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)
global a;
setappdata(0,'utama', gcf);
setappdata(gcf, 'nn', 0);
h = 1;
x = [];
while h == 1
    utama = getappdata(0, 'utama');
    nn = getappdata(utama, 'nn');
    if nn == 1;
       break
    end
    input = fscanf(a);
    y = str2num(input);
   x = [x ; y];
   axes(handles.axes1)
   plot(x)
    xlabel('time');
    ylabel('amplitude');
    pause(0.01); %waktu pencacahan disesuaikan sendiri sesuai
kebutuhan satuannya s, jadi ini mencacah tiap 0.1 s
end
guidata(hObject,handles);
% --- Executes on button press in reset button.
function reset button Callback(hObject, eventdata, handles)
% hObject handle to reset_button (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles
           structure with handles and user data (see GUIDATA)
cla(handles.axes1, 'reset')
guidata(hObject,handles);
% --- Executes on button press in stop button.
function stop button Callback(hObject, eventdata, handles)
```

```
% hObject handle to stop button (see GCBO)
```

```
% eventdata reserved - to be defined in a future version of
MATLAR
% handles structure with handles and user data (see GUIDATA)
setappdata(0, 'utama',gcf);
setappdata(gcf, 'nn', 1);
guidata(hObject,handles);
% --- Executes during object creation, after setting all
properties.
function axes7 CreateFcn(hObject, eventdata, handles)
% hObject handle to axes7 (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles empty - handles not created until after all
CreateFcns called
% Hint: place code in OpeningFcn to populate axes7
% --- Executes during object creation, after setting all
properties.
function text5 CreateFcn(hObject, eventdata, handles)
% hObject handle to text5 (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles
           empty - handles not created until after all
CreateFcns called
function time value Callback(hObject, eventdata, handles)
% hObject handle to time value (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of time value as
text
        str2double(get(hObject,'String')) returns contents of
time value as a double
handles.data1 = get(hObject, 'string');
handles.time = str2double(handles.data1);
guidata(hObject, handles);
% --- Executes during object creation, after setting all
properties.
function time value CreateFcn(hObject, eventdata, handles)
% hObject handle to time value (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles empty - handles not created until after all
CreateFcns called
```

```
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
   set(hObject, 'BackgroundColor', 'white');
end
% --- Executes during object creation, after setting all
properties.
function axes2 CreateFcn(hObject, eventdata, handles)
% hObject handle to axes2 (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles empty - handles not created until after all
CreateFcns called
% Hint: place code in OpeningFcn to populate axes2
% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles
           structure with handles and user data (see GUIDATA)
fig = figure;
copyobj(handles.axes1, fig);
saveas(fig, 'figure_file','fig'); %figure akan disimpan di folder
dimana matlab aktif
%close(fig); %jika close diaktifkan maka fig yang disimpan akan
langsung
%ditutup
```

Hasil Pengambilan Data Menggunakan Natus UltraPro S100

Data hasil dari pengukuran aktifitas otot saat kontraksi dengan menggunakan alat Natus UltraPro S100

	Patien : Patien ID : Sex :	Tn. Luqman 9774 Male			Age : Height : Weight :	24 Th 63 Kg		Hand I Physici Techni	Dominence ian : cian :	: Right
Aedication :										
			ELEC	<u>CTRODI</u>	AGNOSI	TC RES	ULIS			
Side Side	Muscle L.Flexor Radialis	Nerve Wrist-Elbow	Root	Ins Act	Fibs	Psw None	Amp	Dur N	Poly R. Sakur	Int Pat
Sensor NCS	L.Biceps	Elbow	100		None	None			J.K. Sakur	a Reduced
Muscle	Latency ms	Amplitude mV	Rel. Amp %	Duration	Distance mm					
Flexor Radialis Flexor Radialis Biceps		1,12 1,29 0,79	100 100 97,4	5,65 6,55 5,76						
2.Biceps	and the second	0,63	91,1	<u>WA</u>	VEFOR	MS				
		BICLU	h Blongs, Rad			1		Di	K-Left Bergelikat	
	- + White	Nu M					L lat	YAN A	vlt	
	1 My YWW						MW	制約		
	L 100 Long	, DIGLIO	To (inv)					D	10 (mm) 45- Left Radiolis Rad	
									1	
	1 inst	1. July								
	1. 111		10 freed			300 (m)		11	1 10 (mar)	

Perhitungan rata – rata dan % *error* alat Elektromiograf Pada Aktifitas Otot Saat Kontraksi *Radialis* dan Kontraksi *Bisep*

- 1. Perhitungan rata rata dan % error pada saat kontraksi, pada Lius.
 - A. Elektromiograf
 - Tangan kanan

Kontraksi Radialis	Kontraksi Bisep		
Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$	Rata-rata $(\bar{x}) = \frac{\sum Xi}{n}$		
$=\frac{3,75+3,05}{2} = 3,4$	= $\frac{2,75+2,75}{2} = 2,75$		

Kontraksi Radialis	Kontraksi Bisep		
Rata-rata $(\overline{x}) = \frac{\sum \overline{x}}{n}$	Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$		
= $\frac{1.17+1.12}{2} = 1.14$	= $\frac{0.7+0.8}{2} = 0.75$		

- B. Elektromiograf Natus UltraPro S100
 - Tangan kanan

Kontraksi Radialis	Kontraksi Bisep		
Rata-rata $(\overline{x}) = \frac{\sum \overline{x}}{n}$	Rata-rata $(\bar{x}) = \frac{\sum Xi}{n}$		
= $\frac{3,58+3,27}{2} = 3,42$	= $\frac{2,78+2,76}{2} = 2,77$		

Kontraksi Radialis	Kontraksi Bisep
Rata-rata $(\bar{x}) = \frac{\sum Xi}{n}$	Rata-rata $(\bar{x}) = \frac{\sum Xi}{n}$
= $\frac{1,16+1,14}{2} = 1,15$	= $\frac{0.79+0.72}{2} = 0.75$

<i>Error</i> % kontraksi radialis kanan	$= \frac{SIMPANGAN}{DATA SETTING} \times 100\%$ $= \frac{3,425 - 3,4}{3,425} \times 100\%$
<i>Error</i> % kontraksi Bisep kanan	$= \frac{SIMPANGAN}{DATASETTING} \times 100\%$ $= \frac{2,77-2,75}{2,77} \times 100\%$
<i>Error</i> % kontraksi radialis kiri	$= 0,72 \%$ $= \frac{SIMPANGAN}{DATA SETTING} \times 100\%$ $= \frac{1,15-1,145}{1,15} \times 100\%$
<i>Error</i> % kontraksi Bisep kiri	$= 0,43 \%$ $= \frac{SIMPANGAN}{DATASETTING} \times 100\%$ $= \frac{0,755 - 0,75}{0,755} \times 100\%$
	= 0,66 %

- 2. Perhitungan rata rata dan % error pada saat kontraksi, pada Neli.
 A. Elektromiograf
 - Tangan kanan

Kontraksi Radialis	Kontraksi Bisep
Rata-rata $(\bar{x}) = \frac{\sum Xi}{n}$ = $\frac{0.89+1.62}{2} = 1.25$	Rata-rata $(\bar{x}) = \frac{\sum \bar{x}}{n}$ = $\frac{1,52+1,39}{2} = 1,45$

• Tangan Kiri

Kontraksi Radialis	Kontraksi Bisep		
Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$	Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$		
= $\frac{1.46+1.47}{2} = 1.46$	= $\frac{0.97 + 0.88}{2} = 0.92$		

- B. Elektromiograf Natus UltraPro S100
 - Tangan kanan

Kontraksi Radialis	Kontraksi Bisep		
Rata-rata $(\bar{x}) = \frac{\sum \bar{x}}{n}$	Rata-rata $(\bar{x}) = \frac{\sum Xi}{n}$		
= $\frac{0.81+1.71}{2} = 1.26$	= $\frac{1.58+1.34}{2} = 1,46$		

Kontraksi Radialis	Kontraksi Bisep				
Rata-rata $(\overline{x}) = \frac{\sum \overline{x}}{n}$	Rata-rata $(\bar{x}) = \frac{\sum \bar{x}}{n}$				
= $\frac{1.49+1.47}{2} = 1.48$	= $\frac{0.92 + 0.94}{2} = 0.93$				

		SIMPANGAN		
Error % kontraksi radialis kanan	=	DATASETTING	x 100%	
	= 1	1,26-1,255 1,26 x 1009	2⁄0	

$$Error \% \text{ kontraksi Bisep kanan} = \frac{SIMPANGAN}{DATA SETTING} \ge 100\%$$
$$= \frac{1.46 - 1.455}{1.46} \ge 100\%$$
$$= 0,34 \%$$
$$Error \% \text{ kontraksi radialis kiri} = \frac{SIMPANGAN}{DATA SETTING} \ge 100\%$$
$$= \frac{1.48 - 1.465}{1.48} \ge 100\%$$
$$= 1,01 \%$$
$$Error \% \text{ kontraksi Bisep kiri} = \frac{SIMPANGAN}{DATA SETTING} \ge 100\%$$
$$= 0.93 - 0.925$$
$$\ge 100\%$$

- 3. Perhitungan rata rata dan % error pada saat kontraksi, pada Kautsar.
 - A. Elektromiograf
 - Tangan kanan

Kontraksi Radialis	Kontraksi Bisep
Rata-rata $(\overline{x}) = \frac{\sum Xi}{n}$	Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$
= $\frac{1,32+1,28}{2} = 1,3$	= $\frac{0.97 + 0.92}{2} = 0.94$

Kontraksi Radialis	Kontraksi Bisep
Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$	Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$
= $\frac{3,34+2,96}{2} = 3,15$	= $\frac{2,5+2,63}{2} = 2,56$

B. Elektromiograf Natus UltraPro S100

• Tangan kanan

Kontraksi Radialis	Kontraksi Bisep
Rata-rata $(\bar{x}) = \frac{\sum Xi}{n}$	Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$
= $\frac{1,26+1,37}{2} = 1,31$	= $\frac{0.93 + 0.95}{2} = 0.94$

• Tangan Kiri

Kontraksi Radialis	Kontraksi Bisep
Rata-rata $(\bar{x}) = \frac{\sum Xi}{n}$	Rata-rata $(\bar{x}) = \frac{\sum Xi}{n}$
= $\frac{3,41+2,97}{2} = 3,19$	= $\frac{2,33+2,87}{2} = 2,6$

<i>Error</i> % kontraksi radialis kanan	$= \frac{SIMPANGAN}{DATA SETTING} \times 100\%$ $= \frac{1,315 - 1,3}{1,315} \times 100\%$
<i>Error</i> % kontraksi Bisep kanan	$= 1,14 \%$ $= \frac{SIMPANGAN}{DATASETTING} \times 100\%$ $= \frac{0,94 - 0,945}{0,94} \times 100\%$
<i>Error</i> % kontraksi radialis kiri	$= 0,53 \%$ $= \frac{SI MPANGAN}{DATA SETTING} \times 100\%$ $= \frac{3,19-3,15}{3,19} \times 100\%$

= 1,25 %

Error % kontraksi Bisep kiri

$$= \frac{SIMPANGAN}{DATA SETTING} \times 100\%$$

$$= \frac{2,6-2,565}{2,6} \times 100\%$$

$$= 1,35 \%$$

4. Perhitungan rata – rata dan % *error* pada saat kontraksi, pada Luqman. A. Elektromiograf

• Tangan kanan

Kontraksi Radialis	Kontraksi Bisep
Rata-rata $(\overline{x}) = \frac{\sum Xi}{n}$ $=\frac{1.49+1.64}{2} = 1,56$	Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$ $= \frac{0.82 + 0.95}{2} = 0.88$

• Tangan Kiri

Kontraksi Radialis	Kontraksi Bisep
Rata-rata $(\overline{x}) = \frac{\sum \overline{x}}{n}$	Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$
= $\frac{1,18+1,2}{2} = 1,19$	= $\frac{0.62 + 0.79}{2} = 0.70$

- B. Elektromiograf Natus UltraPro S100
 - Tangan kanan

Kontraksi Radialis	Kontraksi Bisep
Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$	Rata-rata $(\overline{x}) = \frac{\sum \overline{Xi}}{n}$
= $\frac{1.61+1.49}{2} = 1.55$	= $\frac{0.88 + 0.92}{2} = 0.9$

Kontraksi Radialis	Kontraksi Bisep

Rata-rata $(\bar{x}) = \frac{\sum Xi}{n}$	Rata-rata $(\bar{x}) = \frac{\sum X_i}{n}$
$=\frac{1,12+1,29}{2}=1,20$	$= \frac{0,79+0,63}{2} = 0,71$

		SIMPANGAN	
Error % kontraksi radialis kanan	=	DATA SETTING	x 100%
	= 1	1,55–1,565 1,55 x 1009	%
	= (),97 %	
		SIMPANGAN	

		SIMPANGAN	
Error % kontraksi Bisep kanan	=	DATASETTING	x 100%
	= -	0,9-0,885 0,9 x 100%)

SIMPANGAN

Error % kontraksi radialis kiri	= DATA SETTING x 100%
	$= \frac{1,205 - 1,19}{1,205} \times 100\%$

	SIMPANGAN	
Error % kontraksi Bisep kiri	= DATASETTING x	100%
	$= \frac{0.71 - 0.705}{0.71} \ge 100\%$	